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Compactness is generally pretty useful in elementary real analysis – for example, a
continuous function from a compact subset of a metric space to the reals is guaranteed
to attain a maximum within that set under the extreme value theorem, which is a useful
property in applications to continuous optimization problems. Given the classical closure
properties of the collection of compact sets (closed under images of continuous maps and
infinite products by Tychonoff’s Theorem), and the wide variety spaces we can build
from the interval, it would be practical to define compactness in HoTT and prove that the
closed interval is compact.

The book considers three different classical notions of compactness. The first is met-
ric compactness, which says that the (metric) space is Cauchy-complete and ”totally-
bounded”, which means that the space is coverable by a finite number of balls of fixed
size for every possible size. The second is Bolzano-Weierstrass compactness, which says
that every sequence has a convergent subsequence. The last is Heine-Borel compactness,
which states that every open cover of the set has a finite subcover, which is particularly
suitable when we only have the guarantee of a topology (but not necessarily a metric).

0.1 The Bolzano-Weierstrass property destroys realizability

Bolzano-Weierstrass compactness, however, has a difficulty that should be immediately
apparent from the interpretation of constructive mathematics through realizability mod-
els. Suppose that we formalize Turing machines + input pairs in HoTT under some type

Turing : U

with an operation
hasHaltedWithin : Turing → N→ 2

which determines if a given Turing machine and input has halted within a certain number
of steps, returning 12 if so, and 02 if not. Then, for any element t : Turing, consider the
sequence

xn :≡ rec2(RC , hasHaltedWithin(t, n), 0R, 1R)

Notice then that if we use Bolzano−Weierstrass−Property on x to obtain a convergent
subsequence s, we could then immediately ask for a value in s within 1/2 of the limit,
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which would immediately tell us (since x takes on discrete values, and once a Turing ma-
chine has halted, it stays halted) whether t ever halts. Consequently, we could construct
a function

HaltingOracle : Turing → 2

which tells us whether or not a given (machine, input) pair halts, but that means that
when we use realizability to extract an algorithm from HaltingOracle, we have solved
the halting problem, which is an impossibility. So no realizability model is a model of any
version of HoTT where [0, 1] is Bolzano-Weierstrass compact.

Since we’d really like constructive HoTT to have a computational interpretation, leav-
ing non-computable functions to Classical HoTT, the Bolzano-Weierstrass property is no
good in this setting.

1 Metric Compactness

1.1 Basic Definitions

Recall that a metric space (M,d) is some set M together with an metric d : M × M →
R which is non-negative, symmetric, satisfies the triangle inequality, and is such that
d(x, y) = 0 if and only if x = y. Then, in analogy with what we did for real numbers, we
can define Cauchy approximations in M by:

CauchyApx :≡
∑

x:Q+→M

isCauchyApx(x)

isCauchyApx(x) :≡
∏
ε,δ:Q+

d(xε, xδ) < ε+ δ

As usual, we will refer to the first projection of CauchyApx as being a ”Cauchy ap-
proximation”. For both of the above, (M,d) is taken to be an implicit first argument.

We can also define a limit L : M of a Cauchy approximation x by essentially demand-
ing that xε is always at or within a distance of ε of the limit

isLimit(L, x) :≡
∏
ε,δ:Q+

d(xε, L) < ε+ δ

We could have phrased this as

isLimit(L, x) :≡
∏
ε:Q+

d(xε, L) ≤ ε

but the first formulation more clearly shows the connection with isCauchyApx(x), be-
cause it essentially states that L is ”as good” as any δ-close approximation xδ.

Cauchy-completeness then becomes:

isCauchyComplete((M,d) :≡
∏

x:CauchyApx((M,d))

∑
L:M

isLimit(L, pr1(x))
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Note that the existence of the limit is not propositionally truncated. This will be useful
in the later proof of an analogue of the Extreme Value Theorem, because the proof can be
read as a recipe to construct a certain sequence, and the Cauchy-completeness will yield
a ”recipe” to extract the maximum out of that sequence.

With that out of the way, note that we could easily express ”metric compactness” given
some kind of notion of a cover of a space by ε-sized balls. We’ll call such a cover an ε-net,
defined by:

ε− net((M,d)) :≡
∏
ε:Q+

∑
L:List(M)

∏
y:M

Exists(L, x 7→ (d(x, y) < ε))

Where Exists :
∏

A:U List(A)→ (A→ Prop)→ Prop is defined by induction on Lists
as:

Exists(Nil, p) :≡ 0

Exists(Cons(a, L), p) :≡ Exists(L, p) ∨ p(a)

It should then be clear that an element of Exists(L, p) implies that there merely exists
a k : N such that the kth element of L satisfies p, since we could prove the equivalence of
the two through a simple List induction (once we have enough of the theory of List and
N built up!)

This definition eliminates the notational abuse used in the book by following through
on Remark 11.5.4. From here on out, though, we’ll refer to list elements in particular
positions using subscripts, and ellipses for simple iterations.

Then M is said to be totally bounded if

TotallyBounded((M,d)) :≡
∏
ε:Q+

ε− net((M,d))

So we may define

MetricallyCompact((M,d)) :≡ isCauchyComplete((M,d))× TotallyBounded((M,d))

1.2 All closed intervals are metrically compact

We can show that [a, b] is metrically compact with the induced metric from RC . For
Cauchy-completeness, note that back when we did the proof that Lipschitz functions on
Q lift to Lipschitz functions on reals, we defined the lifting on limit points by:

f̄(lim(x)) :≡ lim(λε.f̄(xε/L))

We also used a similar trick for the proof that a two-argument function that is a contrac-
tion map in each parameter individually lifts from rationals to the reals. Essentially, we
defined the liftings so that ”taking the limit” commutes with the lifted function. So, we
can define

clamp(a, b, z) :≡ max(a,min(b, z))
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which takes z to the interval [a, b], and since clamp(a, b) is a composite of the kind of
functions described above, each with Lipschitz constant 1, if x is a Cauchy approximation
in [a, b],

clamp(a, b)(lim(x)) = lim(λε.clamp(a, b)(xε)

but each xε is in [a, b], so the clamping goes away, and this is

= lim(x)

so limits of Cauchy approximations stay in [a, b].

1.3 Analogue of the Extreme Value Theorem

Unfortunately, we won’t be able to prove the Extreme Value Theorem in its full generality,
because we’ll only get as far as showing that the image of uniformly continuous maps on
totally bounded spaces have a supremum, and the classical way of moving from existence
of a supremum to the existence of a maximum relies on the Bolzano-Weierstrass property,
which we know is not valid. Nevertheless, we’ll recover a suitable analogue.

A function f : M → R is uniformly continuous if

uniformContin(f) :≡
∏
ε:Q+

∑
δ:Q+

∏
x,y:M

d(x, y) < δ → |f(x)− f(y)| < ε

Given a uniformly continuous function f , define its modulus of uniform continuitymodUnifContin(f) :
Q+ → Q+ as the function taking ε to δ extracted from the witness to uniformContin(f).

Suppose we have such an f , and (M,d) is totally bounded. Then, this means that
(M,d) has an ε − net((M,d)) for every ε, which we can view as increasingly-good finite
ball-based approximations ofM within ε-neighborhoods. First, note that if we have any ε-
net with no points in it,M must be empty, and so it wouldn’t make any sense to formulate
the theorem to begin with. So what we could do is to consider a Cauchy approximation
to the supremum of f constructed by taking the max over all points in an ε-net, and then
take ε to zero. However, note that this awkwardly backwards, because the statement of
uniform continuity lets us meet a standard of closeness the codomain by prescribing a
standard in the domain. So instead, let h :≡ modUnifContin(f), and consider h(ε)−nets.

Let
xε :≡ reduce(max,map(f,Nh(ε)))

for Nh(ε) the list of points in the h(ε) − net from the witness to the total boundedness of
M . This is a Cauchy approximation, since if we compare xε and xδ, we can see that every
point z in the list Nh(δ) is h(ε)-close to some point y in the list Nh(ε), since the latter is a
h(ε)-net. So d(y, z) < h(ε), so by uniform continuity of f , |f(y) − f(z)| < ε. But then,
f(z) < f(y) + ε, and since f(y) ≤ xε by the very definition of ≤, we obtain f(z) < xε + ε,
and so xδ < xε + ε. We could also have equally well reversed this argument, obtaining
xε < xδ+δ, and so, putting the two together, we obtain xδ−xε < ε(+δ) and xε−xδ < δ(+ε),
so xε ∼ε+δ yδ.

Now that we have a Cauchy approximation of maxima, passing to the limit should
yield the supremum we want. Set m ≡ lim(x). Then, we need to show that for any x : M ,
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f(x) ≤ m. But since there’s a function ¬(x < y) → (y ≤ x) as part of R satisfying the
ordered field axioms, we can suppose m < f(x) and attempt to exhibit an element of 0.
By the Archimedian principle on R, there’s some rational q such that m < q < f(x), and
so by the Archimedian principle again, we can obtain a rational ε between zero and q−m
such that m+ ε < f(x). From there, note that the h(ε)-net from xε contains a point y such
that f(y) is strictly ε-close to f(x). Here, the book gets somewhat sloppy by assuming
that f(y) ≤ m is obvious. We actually need to show that max(f(y),m) = m to do this
(boiling down to definitions), which requires another application of the Lipschitz-esque
limit-switching on max to deal with m, and another use of the uniform continuity of f .
Once that’s done, we see that there’s a contradiction, since m < f(x)− ε < f(y) ≤ m.

The above proof shows that m is an upper bound, but we also need to show that it’s
ε-close to some f(u) for some u : M to show that it’s the supremum. Here, the book
contains a repeated typo – it referred to ”f(xε/2)”, which is complete nonsense. I have no
idea how the proof in the book is supposed to proceed in light of this error. Nevertheless,
like the book, note that |m− xε/2| ≤ (1/2)ε since m is the limit of x.

I tracked down a page (p94) out of the Google preview of Bishop’s Constructive Anal-
ysis which performs this proof, and it seems that the real way to do it is to note that any
h(ε/2)-net onM yields an (ε/2)-net in Im(f), which w.l.o.g. we could augment with infor-
mation about the points in the domain that the points in R are images of. Then, note that
xε/2 is in Im(f) (since finite subsets of reals are closed under max), and so there is some
u such that |f(u)− xε/2| < (ε/2) using the explicitly-constructed (ε/2)-net. Consequently,
by the triangle equality, we may obtain |m− f(u)| < ε, as desired.

1.3.1 Discussion

While the above theorem is useful to some degree, it would be more widely applicable if
we could at least weaken the demand for uniform continuity to a demand for continuity.
One possible way to do that would be to demonstrate that any continuous function with
a (metrically) compact co-domain is uniformly continuous. However, the simplest proof
of this fact relies on the classical equivalence of metric compactness with Heine-Borel
compactness.

2 Heine-Borel Compactness and Inductive Covers

For our purposes, it would be nice enough to show that closed intervals are Heine-Borel
compact, since we could hope for this to yield a better analogue of the Extreme Value The-
orem for functions between compact subsets of the reals. Define a family of basic intervals
as a pair (I, F ) such that F : I → Q × Q. Here, I is an index set, and F returns the end-
points of the (open) interval the family defines. To ease their construction, finite examples
of such families are presented as lists [(a0, b0), ...(an, bn)], and are taken to be indexed by
Fin(n). Then, a pointwise cover of [a, b] is a family of basic intervals (F, I) such that:

∀(x : [a, b]). ∃(i : I).pr1(F (i)) < x < pr2(F (i))

– that is, every point is merely contained in some interval in the family.
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The notion of a pointwise cover is good enough classically to express Heine-Borel
compactness – that’s Theorem 11.5.11. However, constructively, we need something more
structured. Instead of talking about individual points, it would be good to define an
inductive type specifying rules for when something covers something else, so we would
not only have a cover, but reasons for why it covers.

So, we start defining an inductive cover as a relation between an open interval repre-
sented by its endpoints, and a family of basic intervals:

/ : (Q×Q)→ (
∑
I:U

(I → Q×Q))→ Prop

It’s clear that any interval in a family (I, F ) should be covered by the family, so we
have reflexivity:

F (i) / (I, F )

It should also be the case that if a family (I, F ) covers every interval in the family (J,G),
and (J,G) covers (q, r), (I, F ) should cover (q, r) by transitivity:

(q, r) / (J,G) ∧ ∀(j : J).G(j) / (I, F )→ (q, r) / (I, F )

Analogously, we also need to deal with intervals that are subsets of others (which we
could view as a ”singleton covering”), which leads to monotonicity:

(q, r) ⊆ (s, t) ∧ (s, t) / (I, F )→ (q, r) / (I, F )

While reflexivity already is sufficient to handle limited cases of unions of intervals, we
should also do something about their intersections. We should be able to relativize a
cover (I, F ) to some interval (s, t), and that is exactly the content of localization:

(q, r) / (I, F )→ (q, r) ∩ (s, t) / (I, λi.(F (i) ∩ (s, t)))

All of these would be very general if we replaced open intervals with open sets, but we
can leverage properties of open intervals in R to obtain two more properties. The first one
says that overlapping intervals cover one big interval:

q < s < t < r → (q, r) / [(q, t), (r, s)]

and the second says that the infinite collection of open intervals contained in a fixed open
interval covers that interval:

(q, r) / ({(s, t) : Q×Q|q < s < t < r}, λu.u)

From these, we can prove that [a, b] is Heine-Borel compact fairly quickly. Define ”[a, b]
is covered by (I, F )” by the mere existence of an ε-enlarged open interval covered by
(I, F ). Then, the book proves a lemma (11.5.14) which states that for rationals q < s < t <
r where (q, r) / (I, F ), (I, F ) has a finite subcover covering (s, t). To use this, take (q, r) to
be the ε-enlarged open interval, and (s, t) to be an ε/2-enlarged open interval containing
[a, b]. The finite cover of (s, t) from the lemma then immediately yields a finite cover of
[a, b] by definition.

The proof of the lemma is by induction on the structure of S : (q, r) / (I, F ).
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• If S was obtained by reflexivity , we know (s, t) ⊆ (q, r), and so by monotonicity,
(s, t) is covered by [(q, r)], a finite subfamily of (I, F ).

• If S was obtained by transitivity, applying the IH twice yields a finite subfamily
covering (s, t) and finite subfamilies of the larger cover covering every interval in
the other finite subfamily, which we can just concatenate together.

• If S was obtained by monotonicity, we can just apply the IH to the larger of the two
intervals in the constructor, since it still contains (s, t).

• If S was obtained by localization of (J,G) to (a, b), we may simply take a finite
subfamily of (J,G) localized to (a, b).

• The case of two overlapping intervals is direct, because the family is already finite,
so monotonicity on (s, t) ⊆ (q, r) suffices.

• For ”coverage from within”, (s, t) is an interval within the family, and so reflexivity
suffices.

Theorem 11.5.6 shows that under classical assumptions, the notions of ”pointwise
cover” and ”inductive cover” coincide, but that inductive covers are always pointwise
covers (a fact with a rather boring proof).

Now, using the new-fangled notion of an inductive cover, it’s possible to show that
Heine-Borel compactness of a subset A of R with respect to inductive covers implies that
any continuous function f : A→ R is merely uniformly continuous. Recall that continuity
of f means:

∀(u : R)∀(ε : Q+).∃(δ : Q+).(∀v : R).(u ∼δ v)→ (f(u) ∼ε f(v))

Then, using this, for any x : A, we can consider (under one big propositional truncation)
xε to be the interval (x−δ, x+δ) with δ, ε as in the definition of continuity. Then, if we could
construct an infinite family of intervals, one xε, for every x : A, we could extract a finite
subfamily, and take a minimum over all the δ to obtain a modulus of uniform continuity.
However, at the time of writing I’m not sure if the constructors for inductive covers allow
for this in a constructive setting. (In a classical setting, it’s obvious that such an infinite
family would create a pointwise cover, and hence an inductive one.) The best bet looks
like the ”overlapping intervals” constructor somehow combined with transitivity, but I’ll
have to explore that one a bit more.
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