
Mathematics Without Set Theory
Or: How I Learned to Stop Worrying and Love Martin-Lof

Type Theory

Alex Grabanski

12/1/2017



Your Waifu (ZFC) is Shit-Tier
Constructive Type Theory is God-Tier

Alex Grabanski

12/1/2017



What is ZFC, Anyhow?

I System of axioms on top of
first-order logic (FOL)
given by:

I Citation: (http:
//www.mtnmath.com/
whatrh/node57.html)

http://www.mtnmath.com/whatrh/node57.html
http://www.mtnmath.com/whatrh/node57.html
http://www.mtnmath.com/whatrh/node57.html


Fun :D Activity Time :D :D :D

I Define natural numbers using sets :D

I Define pairs using sets :D (S × S)



Fun :D Activity Time :D :D :D

I Define natural numbers using sets :D
I Define pairs using sets :D (S × S)



Fun :D Activity Time :D :D :D

I Define natural numbers using sets :D
I Define pairs using sets :D
I U Got This
I I Believe in U

I Define functions using sets :D



Fun :D Activity Time :D :D :D

I Define natural numbers using sets :D
I Define pairs using sets :D
I U Got This
I I Believe in U
I Define functions using sets :D



One Problem



One Problem



Answers to Earlier Questions: Natural Numbers

I The natural numbers are defined by the Axiom of Infinity as
the collection of sets

I {} (zero)
I {{{}}{}} (one)
I {{{{}}{}}{{{{}}{}}}} (two)
I And so on, where if S is the set representing some number,

S ∪ {S} gives the next one
I This representation is absolute garbage.



Answers to Earlier Questions: Pairs

I Pairs are defined by the Axiom of Pairing :D



Answers to Earlier Questions: Pairs
I Pairs are defined by the Axiom of Pairing :D
I Actually no, that just says that for any two elements, we

can make a set containing both of them. :’(
I How do we do Cartesian Products?
I (x , y) for x ∈ X , y ∈ Y translates to

I {{x}, {x , y}}
I and a whole bunch of garbage proving from the axioms that

the collection of all things of this form is a valid set

Figure: Look at it!



Answers to Earlier Questions: Functions

I A function from set A to set B is a subset R ⊆ A× B such
that given an a ∈ A, if (a,b1) is in R, and (a,b2) is in R,
then b1 and b2 must be the same.

I Intuitively: Only one output per input
I Not-so-intuitively: this condition:

∀a ∈ A ∀b1 ∈ B ∀b2 ∈ B (a,b1) ∈ R ∧ (a,b2) ∈ R → b1 = b2

I But wait! ∀a ∈ A is actually syntactic sugar, and so is
(a,b1).

I

∀a (a ∈ A→ ∀b1 (b1 ∈ B → ∀b2 (b2 ∈ B

→ {a, {a,b1}} ∈ R ∧ {a, {a,b2}} ∈ R → b1 = b2)))



Answers to Earlier Questions: Functions

But wait, we’re not finished!
I We actually defined partial functions – we need to ensure

that every input has a corresponding output!
I So we also need:

∀a (a ∈ A→ ∃b b ∈ B ∧ (a,b) ∈ R)

I Okay great, we did it, but...



I WANT YOU TO LOOK AT IT

∀a (a ∈ A→ ∃b b ∈ B ∧ (a,b) ∈ R)

∧∀a (a ∈ A→ ∀b1 (b1 ∈ B → ∀b2 (b2 ∈ B

→ {a, {a,b1}} ∈ R ∧ {a, {a,b2}} ∈ R → b1 = b2)))



Why ZFC sucks

Your Waifu is Shit Because It:
I Overcomplicates N
I Overcomplicates pairs
I Overcomplicates functions



Why ZFC sucks II, Electric Boogaloo

Your Waifu is Shit Because It
(Continued):

I Overuses Deus Ex
Machina
(Non-constructivity)

I Forgets proof contents
I Is literally just FOL

duct-taped to rules for
manipulating weird curly
brackets

The last three are not just problems with ZFC, they’re problems
with any axiomatic system built on top of classical FOL.



The Trouble With Non-Constructivity, In A Nutshell

I If we can build things just by knowing that it’s impossible
that something doesn’t exist

I Then we don’t know crap about how it got there in the first
place



The Trouble With Non-Constructivity, In A Nutshell

I If we can build things just by knowing that it’s impossible
that something doesn’t exist

I Then we don’t know crap about how it got there in the first
place



Ex: Proofs by Contradiction

I Consider the statement ”There exists an irrational real
number.”

I We can prove it using contradiction: Suppose that all real
numbers were rational. Rationals are countable. Reals are
not. Contradiction. BAM.

I This tells us absolutely nothing about the answer to this
slightly different question:

I ”Can you give me an example of an irrational number?”
I ”No, and we’ll drown anybody who tries to.”



Ex: Proofs by Contradiction

I Consider the statement ”There exists an irrational real
number.”

I We can prove it using contradiction: Suppose that all real
numbers were rational. Rationals are countable. Reals are
not. Contradiction. BAM.

I This tells us absolutely nothing about the answer to this
slightly different question:

I ”Can you give me an example of an irrational number?”
I ”No, and we’ll drown anybody who tries to.”



Ex: Proofs by Contradiction

I Consider the statement ”There exists an irrational real
number.”

I We can prove it using contradiction: Suppose that all real
numbers were rational. Rationals are countable. Reals are
not. Contradiction. BAM.

I This tells us absolutely nothing about the answer to this
slightly different question:

I ”Can you give me an example of an irrational number?”

I ”No, and we’ll drown anybody who tries to.”



Ex: Proofs by Contradiction

I Consider the statement ”There exists an irrational real
number.”

I We can prove it using contradiction: Suppose that all real
numbers were rational. Rationals are countable. Reals are
not. Contradiction. BAM.

I This tells us absolutely nothing about the answer to this
slightly different question:

I ”Can you give me an example of an irrational number?”
I ”No, and we’ll drown anybody who tries to.”



Pythagoras Time :D

Source: Alex’s Adventures in Numberland by Alex Bellos



Ex: Proofs using the Law of The Excluded Middle

I Claim: Every computer program either halts, or it doesn’t.
I Proof: smash that MF ”P ∨ ¬P”
I Different question: ”Can you tell me whether or not

Windows will ever start responding?”

I For general programs, this is the Halting Problem – no
algorithm exists to determine if arbitrary programs halt!

I For Windows, at least we know that if it does, you’ll be
seeing one of these:



Ex: Proofs using the Law of The Excluded Middle

I Claim: Every computer program either halts, or it doesn’t.
I Proof: smash that MF ”P ∨ ¬P”
I Different question: ”Can you tell me whether or not

Windows will ever start responding?”
I For general programs, this is the Halting Problem – no

algorithm exists to determine if arbitrary programs halt!

I For Windows, at least we know that if it does, you’ll be
seeing one of these:



Ex: Proofs using the Law of The Excluded Middle

I Claim: Every computer program either halts, or it doesn’t.
I Proof: smash that MF ”P ∨ ¬P”
I Different question: ”Can you tell me whether or not

Windows will ever start responding?”
I For general programs, this is the Halting Problem – no

algorithm exists to determine if arbitrary programs halt!
I For Windows, at least we know that if it does, you’ll be

seeing one of these:



The Trouble With Forgetting Proofs, In a Nutshell

I Just because we proved something doesn’t mean that it
doesn’t matter how we’ve proved it.

I If we remember how we proved things, we might be able to
use them as algorithms, so long as we proved them
constructively.

I General flow of the proof ' General flow of the algorithm



The Spaghetti Parable

I I went into Little Italy and bought some uncooked spaghetti
I But I have a compulsive need to sort my spaghetti by

height before I cook it.
I Ohhhhh noooo

Figure: Spaghett



Spaghetti Sort To The Rescue!

Here’s the Algorithm:
I Step 1: Take all the spaghetti in one hand
I Step 2: Put your other palm at the ends of the spaghetti
I Step 3: Push to create a level surface
I Step 4: Hold the spaghetti above the surface of a table,

orthogonal to it
I Step 5: Slowly lower the spaghetti down onto the table
I Step 6: Remove the first noodle which hits the table. That’s

the longest one, so put it to the left of your spaghetti line.
I Repeat Step 5 and 6 until no spaghetti remains



Every List of Naturals May Be Sorted: Proof

I Suppose we have a list L = [x1, ...xn] ∈ Nn.
I L may be sorted if there exists a permutation σ ∈ Sn such

that Lσ = [xσ(1), ...xσ(n)] and for every i , xσ(i) ≤ xσ(i+1).



Every List of Naturals May Be Sorted: Proof

I Spaghetti Sort Proof
I We proceed by induction on the size of the smallest

element:
I Base: The maximum element is 0. Then the list is already

sorted, dummy.
I Induction: Suppose that we can sort all lists whose

maximum element is m or smaller. Suppose we have a list
with a maximum of m + 1. Take all of the elements which
are zero and permute them to the beginning of the list.
Then, consider the sublist after the zeroes. If we subtract 1
from every element, we can sort that sublist. When we’re
done, add 1 back to every element in that sublist. Since
(+1) and (-1) are inverses and 0 ≤ x for any x ∈ N, the list
is now sorted.



Another Sorting Proof

There’s another, less elegant proof that ”every list may be
sorted”, but we first need a lemma:

Lemma (Combining Two Sorted Lists)
Suppose that we have two sorted lists L1 = [x1, ...xn] and
L2 = [y1, ...ym]. Then we can build a sorted version of L1
concatenated with L2.

I Boring Proof: We know how to sort lists
I More interesting proof: Repeatedly pull out the minimum of

the two lists to build the result. (This may be viewed a
double structural induction.)



Another Sorting Proof

Proof (By Strong Induction on Length):
I Base case (length 0, 1): Lists of length zero and one are

already sorted, dummy.
I Inductive Step: Suppose that we can sort any list of length

less than n. Split into two halves, of sizes floor(n) and
n − floor(n). Both of these are less than n. Sort them,
recombine with the lemma.



WHO’S THAT SORTING ALGORITHM?



IT’S... Mergesort?



Sure, both Spaghetti Sort and Mergesort give ways to prove
that we can sort lists. But the details of the proof matter if we
wanna sort things. If the length of the list is denoted by n...

I Mergesort takes O(nlog(n)) operations
I Spaghetti Sort takes... wait, what even is its runtime?

I Let m be the size of the largest element in the list.
I In the worst case, spaghetti sort decrements all n elements

m times
I O(nm)

I For 64-bit unsigned integers,
m = 18,446,744,073,709,551,615.

I :D That’s a constant factor (!!)
I Spaghetti sort is O(n) for sorting uint64’s (!!!)



Sure, both Spaghetti Sort and Mergesort give ways to prove
that we can sort lists. But the details of the proof matter if we
wanna sort things. If the length of the list is denoted by n...

I Mergesort takes O(nlog(n)) operations
I Spaghetti Sort takes... wait, what even is its runtime?
I Let m be the size of the largest element in the list.
I In the worst case, spaghetti sort decrements all n elements

m times
I O(nm)

I For 64-bit unsigned integers,
m = 18,446,744,073,709,551,615.

I :D That’s a constant factor (!!)
I Spaghetti sort is O(n) for sorting uint64’s (!!!)



Sure, both Spaghetti Sort and Mergesort give ways to prove
that we can sort lists. But the details of the proof matter if we
wanna sort things. If the length of the list is denoted by n...

I Mergesort takes O(nlog(n)) operations
I Spaghetti Sort takes... wait, what even is its runtime?
I Let m be the size of the largest element in the list.
I In the worst case, spaghetti sort decrements all n elements

m times
I O(nm)

I For 64-bit unsigned integers,
m = 18,446,744,073,709,551,615.

I :D That’s a constant factor (!!)
I Spaghetti sort is O(n) for sorting uint64’s (!!!)



Sure, both Spaghetti Sort and Mergesort give ways to prove
that we can sort lists. But the details of the proof matter if we
wanna sort things. If the length of the list is denoted by n...

I Mergesort takes O(nlog(n)) operations
I Spaghetti Sort takes... wait, what even is its runtime?
I Let m be the size of the largest element in the list.
I In the worst case, spaghetti sort decrements all n elements

m times
I O(nm)

I For 64-bit unsigned integers,
m = 18,446,744,073,709,551,615.

I :D That’s a constant factor (!!)
I Spaghetti sort is O(n) for sorting uint64’s (!!!)



Sorting Out the Moral of the Story



The Bigger Picture

I ZFC is hopelessly non-constructive garbage.

I Who else was hopelessly non-constructive garbage?

I

I (He got rejected from art school)



The Bigger Picture

I ZFC is hopelessly non-constructive garbage.
I Who else was hopelessly non-constructive garbage?

I

I (He got rejected from art school)



The Bigger Picture

I ZFC is hopelessly non-constructive garbage.
I Who else was hopelessly non-constructive garbage?

I

I (He got rejected from art school)



The Bigger Picture

I ZFC is hopelessly non-constructive garbage.
I Who else was hopelessly non-constructive garbage?

I

I (He got rejected from art school)



Why Care About Constructive Type Theory?

I Many modern-day proof assistants (Coq, Agda) have
MLTT as a sub-language

I Proofs in constructive MLTT always are actually runnable
computer programs

I We can corrupt the mathematical youth by turning them
over to the dark side (Computer Science) :D



A Sampling of MLTT

I Instead of talking about sets, we talk about types.
I We have exactly two judgments:

I x ≡ y , which means ”x and y may be rewritten to each
other” (for definitions, we write :≡)

I x : A, which means ”x belongs to the type A”
I Judgments are NOT propositions!
I If we write one down, that means it’s a FACT.
I Example:

3 : N

f : N→ N

f :≡ x 7→ x ∗ 2

f (3) ≡ (x 7→ x ∗ 2)(3) ≡ 3 ∗ 2 ≡ 6

(after rewriting using the definition of multiplication)



A Sampling of MLTT : Natural Numbers

Types are defined by how to build them – their constructors For
example, the type of natural numbers

N

is defined by postulating the existence of the constructors:

0 : N

S : N→ N

Examples:
I S(0) - one
I S(S(0)) - two
I S(S(S(0))) - three

... and so on. That is, the natural numbers actually look like
goddamned counting numbers in this system.



A Sampling of MLTT: Good Riddance, Curly Braces

I Functions are the primitive concept here. We don’t have to
define them with something else.

I Pairs? A× B is defined by a constructor which takes two
arguments and gives you something of type A× B.

I Disjoint union? A t B is defined by two constructors,
inL : A→ A t B and inR : B → A t B.



A Sampling of MLTT: Actually Doing Stuff With Types

I With constructors, we have prescribed functions into types.
I How do we get stuff out?
I Recursion and Induction principles.
I Basically, these say that to define a function out of a type,

you only need to define what it does to the constructors.

I Ex 1: To define a function f : A× B → C, you only need to
define f ((a,b)) for a : A and b : B.

I Ex 2: To define a function f : N→ A, you only need to
define f (0) and f (S(n)), assuming that we already know
f (n).



A Sampling of MLTT: Actually Doing Stuff With Types

I With constructors, we have prescribed functions into types.
I How do we get stuff out?
I Recursion and Induction principles.
I Basically, these say that to define a function out of a type,

you only need to define what it does to the constructors.
I Ex 1: To define a function f : A× B → C, you only need to

define f ((a,b)) for a : A and b : B.

I Ex 2: To define a function f : N→ A, you only need to
define f (0) and f (S(n)), assuming that we already know
f (n).



A Sampling of MLTT: Actually Doing Stuff With Types

I With constructors, we have prescribed functions into types.
I How do we get stuff out?
I Recursion and Induction principles.
I Basically, these say that to define a function out of a type,

you only need to define what it does to the constructors.
I Ex 1: To define a function f : A× B → C, you only need to

define f ((a,b)) for a : A and b : B.
I Ex 2: To define a function f : N→ A, you only need to

define f (0) and f (S(n)), assuming that we already know
f (n).



A Sampling of MLTT: No More Goddamned Duct Tape
Let 0 be the type with no constructors (so there’s always a
function of type 0→ A for any type A), and let 1 be the type
with a single constructor ? : 1.
If we squint and read→ as logical implication, 0 as ”false”, and
1 as ”true”...

I A× B behaves like A ∧ B, e.g A ∧ B → A:

pr1 : A× B → A

pr1((a,b)) :≡ a

I A t B behaves like A ∨ B e.g proof of C by cases:

f : (A t B)× ((A→ C)× (B → C))→ C

f ((inL(a), (g,h))) :≡ g(a)

f ((inR(b), (g,h))) :≡ h(b)



A Sampling of MLTT: Doing Logic

I With that, we recover logic

I Err, constructive logic. Defining the negation as ¬A as
A→ 0, which we can roughly read as ”to have an element
of A is absurd”, it turns out that we can prove stuff like
DeMorgan’s laws:

I

¬(A t B)→ ¬A× ¬B

I ...
I oWo, what is this? We can’t actually prove

¬(A× B)→ ¬A t ¬B

Intuitively, ”If having A and B together is absurd, it’s not
necessarily the case that having A is absurd (by itself) or
having B is absurd (by itself)”



A Sampling of MLTT: Doing Logic

I With that, we recover logic
I Err, constructive logic. Defining the negation as ¬A as

A→ 0, which we can roughly read as ”to have an element
of A is absurd”, it turns out that we can prove stuff like
DeMorgan’s laws:

I

¬(A t B)→ ¬A× ¬B

I ...
I oWo, what is this? We can’t actually prove

¬(A× B)→ ¬A t ¬B

Intuitively, ”If having A and B together is absurd, it’s not
necessarily the case that having A is absurd (by itself) or
having B is absurd (by itself)”



A Sampling of MLTT: Doing Logic

I With that, we recover logic
I Err, constructive logic. Defining the negation as ¬A as

A→ 0, which we can roughly read as ”to have an element
of A is absurd”, it turns out that we can prove stuff like
DeMorgan’s laws:

I

¬(A t B)→ ¬A× ¬B

I ...

I oWo, what is this? We can’t actually prove

¬(A× B)→ ¬A t ¬B

Intuitively, ”If having A and B together is absurd, it’s not
necessarily the case that having A is absurd (by itself) or
having B is absurd (by itself)”



A Sampling of MLTT: Doing Logic

I With that, we recover logic
I Err, constructive logic. Defining the negation as ¬A as

A→ 0, which we can roughly read as ”to have an element
of A is absurd”, it turns out that we can prove stuff like
DeMorgan’s laws:

I

¬(A t B)→ ¬A× ¬B

I ...
I oWo, what is this? We can’t actually prove

¬(A× B)→ ¬A t ¬B

Intuitively, ”If having A and B together is absurd, it’s not
necessarily the case that having A is absurd (by itself) or
having B is absurd (by itself)”



MLTT: The Big Picture

Benefits of MLTT:
I Defining types is always as simple as defining how we can

build them
I Defining functions is always as simple as defining how they

act on generic elements or constructors of the domain’s
type.

I We don’t need to duct-tape logic onto MLTT – we get logic
for free (including FOL, but this requires introducing
dependent types, a topic for another day)

I Everything is constructive. We can’t prove the law of the
excluded middle, the law of double negation, etc.

I If we use constructive MLTT in e.g. Agda or Coq, we can
compile it to Haskell, C, Common Lisp, ... etc. and get
runnable code from our proofs.



Further References



Questions?


