
Comments on ”Formalising Real Numbers in
Homotopy Type Theory” + ”Partiality, Revisited”

Alexander Grabanski - ajg137@case.edu

July 24, 2017

When the HoTT book was written in 2013, there was no formalization of the con-
struction of the Cauchy reals in Chapter 11 in Coq nor in Agda. This situation was
remedied in 2016 by Gaëtan Gilbert (GitHub username SkySkimmer https://github.
com/SkySkimmer) https://arxiv.org/pdf/1610.05072.pdf, and in the process
of formalization, they managed to generalize the construction of the Cauchy reals to the
Cauchy completion of any ”premetric space.” They also managed to prove that in the
category of such spaces with Lipschitz maps as morphisms, Cauchy completion forms a
monad, which gives the completion a somewhat nice computational structure.

Simplifying and generalizing the existing proofs in the HoTT book would have been
publishable enough, but Gilbert went further, and defined a function out of the Cauchy
reals isPositive which partially decides the sign of a number (with non-termination on
zero). To do this, he made use of a higher inductive-inductive construction described in
”Partiality, Revisited” https://arxiv.org/abs/1610.09254which expresses possibly-
nonterminating computations. In a very strong sense, a semi-decision procedure for the
positiveness of a real number is the best we could hope for, because a decision procedure
would solve the halting problem. This is simply because if we had a T :≡ (TuringMachine, Input)
pair, and we had a function H : N→ Q such that H(n) = 1 if T has already halted at step
n, and 0 otherwise, we could express the real number:

S =
∞∑
k=0

2−kH(k)

which would be equal to 0 if and only if T halts, so if we could decide equality of a
real number with 0, we could decide the halting problem, an impossibility.

Since monads play a role both in the formalization of some results on the Cauchy re-
als and in the results from ”Partiality, Revisited”, I’ll begin by describing what monads
are, both from the perspective of category theory and from the perspective of their prac-
tical everyday usage in the programming language Haskell, with some examples. Then,
I’ll cover Gaëtan’s formalization up to the ”Cauchy completion forms a monad in the
category of premetric spaces with Lipschitz maps” result. From there, I’ll describe the
results about partial functions in ”Partiality, Revisited” to lead up to the partial decision
procedure isPositive.

1

https://github.com/SkySkimmer
https://github.com/SkySkimmer
https://arxiv.org/pdf/1610.05072.pdf
https://arxiv.org/abs/1610.09254

1 Monads

1.1 In the Context of Programming

Suppose that you’re a computer programmer writing a computer algebra system in your
favorite functional programming language. You’re chugging along, writing some basic
solution tactics, like one for solving linear systems, possibly with some foreknowledge of
variables’ values:

linsolve : EquationSet→ V ariableAssignmentSet→ V ariableAssignmentSet

which work fine and dandy, so you release version 1.0 so you can attract some angel
investors in your company. However, once your application garners the attention of
around three users, one of them asks you to implement a quadratic solver, because it’s
$Current Y ear$, not 1000BC. So, you decide to try to implement this new routine, and
you give it a type signature:

quadsolve : EquationSet→ V ariableAssignmentSet→ V ariableAssignmentSet

However, your V ariableAssignmentSet only expresses a single solution to a system of
equations. So this routine actually needs the type:

quadsolve : EquationSet→ V ariableAssignmentSet→ List(V ariableAssignmentSet)

But then, you see that to form the step-by-step sequences of solving tactics that your users
expect, you’d really want to give all of your tactics the signature

EquationSet→ List(V ariableAssignmentSet)→ List(V ariableAssignmentSet)

so that they’re composable.
Changing this would seem to require going back and making some really mind-numbing

revisions to your old routines, which now number in the hundreds. You request a few
weeks’ more time to perform this refactor for version 2.0.

After manually converting 10 or so routines to loop over an inputList(V ariableAssignmentSet)
and apply their namesake solving tactic to each of them using a map, you get really,
really bored. It would be nice to be able to just leave the signature EquationSet →
V ariableAssignmentSet → V ariableAssignmentSet on most routines, and pull out an
EquationSet→ V ariableAssignmentSet→ List(V ariableAssignmentSet) signature only
when it’s truly needed.

You try to simplify the problem by temporarily ignoring the first parameter, and re-
ducing everything to just a few letters. You have functions V → V which you’d like to
lift to List(V) → List(V) automatically using a map, but you’d also like to lift functions
V → List(V) to functions List(V)→ List(V) which concatenate the solution-sets. So you
define:

liftList : (V → List(V))→ (List(V)→ List(V))

listList(f, L) :≡ reduce([], concat,map(f, L))

2

Then, you’d like to be able to define an operations pipeline, which starts from a single
(possibly-empty) variable-assignment context and terminates in a collection of possible
solutions. At each stage, you’d like to be able to chain together operations using some-
thing of the signature:

>>=: List(V)→ (V → List(V))→ List(V)

which you call ”bind”, and you’d like to be able to inject singleton lists to get the process
started, using

return : V → List(V)

return(a) :≡ Cons(a,Nil)

Now, note that the type of >>= is nearly the same as our liftList, but with the first
two arguments out-of-order, so we can just let:

>>= (x, f) :≡ liftList(f, x)

Then, if you had a quadratic equation set E whose solution pinned down a parameter
used in quadratic equation set F , you are happy that you can now handle this situation
using:

(return(InitialV alues) >>= quadsolve(E)) >>= quadSolve(F)

because the binding operator>>= automatically keeps track of the possibility of multiple
solution sets, with minimal work on your part.

Then, you read up on the Haskell List monad, and find that everything you’ve done
has already been invented, and in a far more general form. Instead of List, a general
monad in Haskell https://wiki.haskell.org/Monad uses some arbitrary type con-
structor M , which leads to the typing judgments:

>>=: A→ (A→M(B))→M(B)

return : A→M(A)

There are also some basic Monad Laws governing the behavior of these two operations in
general. The first one listed,

return(a) >>= k ≡ k(a)

states that pipelining in a return-ed value is exactly the same as directly applying the
whole chain to the value, meaning that our example above could have been written:

quadsolve(E)(InitialV alues) >>= quadSolve(F)

The second law,
m >>= return ≡ m

merely states that return acts as the identity when we treat it as if it were something of
type M(A)→M(A) under the hood. The final law has a more complex expression:

m >>= (x 7→ (k(x) >>= h)) ≡ (m >>= k) >>= h

3

https://wiki.haskell.org/Monad

but really, all it says is that pipelining is associative, with the lambda-abstraction thrown
in there to make the type signatures fit together.

There are many more useful examples of Monads in Haskell, like the IO Monad, which
allows operations which interact with the ”real world”, the ST Monad, which allows car-
rying around readable/writable state with the computational context, and the Maybe
Monad, which expresses the possibility of failing computations. What all of these have
in common is that they represent a way to form pipelines of operations with some spe-
cial extra capabilities, like the capability to chain functions with multiple return values as
seen in the List monad. At the same time, Monads let us isolate these effects by forcing
them into a sub-universe of types in the image of the M(−) functor.

1.2 In a Categorical Context

The central thing we seemed to do to make the example of a monad work in the previous
section was to define the function liftList, which internally used the fact that we can flat-
ten a list of lists into a list. Generalizing to the case of M the type constructor of a monad,
we could expect to need an operation µA for every typeAwhich takesM(M(A))→M(A).
Then, noting that M , in the example above, is a functor (in the HoTT sense) from U → U ,
we could generalize to an arbitrary category C and simply demand that M : C → C is a
functor. Note that the types we had before become objects in C. From there, we can see
that we want µ to be a natural transformation : M ◦M → M , meaning that we should
have:

M(M(A))
M(M(f)) //

µA

��

M(M(B))

µB

��
M(A)

M(f)
//M(B)

Which we can justify in the List example by noting that the operations of mapping an
element-wise operation over (1d/2d) lists and flattening to a one-dimensional list should
commute.

Then, we can pick up return as a natural transformation from the identity functor on
C to M , call it η : 1C → M , since naturality in this case just demands that η successfully
embeds computations performed outside of M , which will turn out to correspond to the
first monad law. Graphically,

A
f //

ηA

��

B

ηB

��
M(A)

M(f)
//M(B)

4

Then, to make the whole construction satisfy the other monad laws, we demand two
coherence conditions. The first states that when we apply µ, it doesn’t matter if we apply
µ to the outer or the inner two nested Ms in M(M(M(X))) to yield a M(M(X)) if we’re
just gonna reduce that with µ to M(X). This will correspond to the third monad law
(associativity) after we identify what >>= is. Graphically, this coherence condition is:

M(M(M(X)))
M(µX) //

µM (X)

��

M(M(X))

µX

��
M(M(X)) µX

//M(X)

Finally, we need a coherence corresponding to the second monad law, which states
that return (or η, in our terminology) is the identity with respect to >>=. Here, we’ll
finally reveal what>>= is: Suppose that we have an f : A→M(B) which we wish to use
as a computation in a binding pipeline. Then, M(f) : M(A) → M(M(B)), which would
be exactly what we’d need to yield a M(A) → M(B) transformation in the pipeline, so
long as we squash the double-application of M using µ. So we may define:

a >>= f :≡ µB(M(f))(a)

Then, the second monad law translates to:

µX ◦M(ηX) ≡ idM(X)

and we might as well demand identity on the other side as well (which is derivable in the
non-categorical context from the first monad law on the identity function in the previous
section):

µX ◦ ηM(X) ≡ idM(X)

This firmly establishes the correspondence between the two notions of a monad.

2 The Cauchy Completion Monad

2.1 Constructing the Cauchy Completion

Gilbert’s formalization of the Cauchy reals begins by describing ”premetric spaces”, which
consist of pairs (A : U ,≈: Q+ × A× A→ Prop) such that the relation ≈ is reflexive, sym-
metric, separated, triangular, and rounded. All of these properties have the same defi-
nitions as seen in Chapter 11 of the HoTT book, and the Cauchy reals together with ∼ε
satisfy them (as shown in Theorem 11.3.16 of the HoTT book). However, the proof sketch
in the HoTT book was a long and irritating nested induction taking up several pages.

Q together with x ≈ε y :≡ |x− y| < ε clearly forms a premetric space, and their initial
Cauchy completion yields the Cauchy reals, so it would be nice to be able to show that
the Cauchy completion of a premetric space is a premetric space. First, Gilbert defines the

5

Cauchy completion CT of a premetric space T in analogy with the HoTT’s book comple-
tion of the rationals, with CT replacing RC everywhere and T replacing Q everywhere,
including in the definition of CauchyApx. For example, the point constructors become:

η : T → CT
lim : CauchyApx→ CT

Where here, η denotes the replacement for the constructor rat. All of the higher con-
structors and constructors of ∼ε stay the same, with the obvious exception that the con-
structor in the Cauchy reals of type:∏

q,r:Q

∏
ε:Q+

(|q − r| < ε)→ rat(q) ∼ε rat(r)

Needs to not rely on properties particular to the rationals, and instead use the premetric
structure, so we get a constructor of type:∏

q,r:T

∏
ε:Q+

(q ∼ε r)→ η(q) ∼ε η(r)

From there, the induction and recursion principles of the Cauchy completion are very
similar to the HoTT principles, and so the proofs of the reflexivity and symmetry of ∼ε
and that CT is a set for any T go through.

2.2 Characterizing Closeness

To get the characterization of ∼ε, Gilbert makes a few definitions.
First, an upper cut is a predicate on Q+ somewhat analogous to the upper set of a

(two-sided) Dedekind cut in that it is rounded:

UpperCut :≡
∑

U :Q+→Prop

isUpperCut(U)

isUpperCut(U) :≡ (∀ε : Q+ (U(ε)↔ ∃δ < ε : Q+ U(δ)))

If we were dealing with R+ instead of Q+, this would say that UpperCuts are open inter-
vals (x,+∞).

Now, since the ultimate goal is to characterize ∼ε, we could simplify the problem
somewhat by fixing a point x and considering all y, ε such that x ∼ε y. These will be in
the form of ”balls centered at x”. Intuitively, we expect that if we keep y fixed as well, the
set of all ε satisfying this should be upward-closed, since if we think of balls of radius r
centered on x, any and all r > d(x, y) will do. Due to use of a metric in the construction of
a ”ball centered at x”, we should also expect to have a version of the triangle inequality
in that we can always enlarge a ball containing y to also contain a close point z. These
conditions put together yield the definition:

Balls :≡
∑

B:CT→Q+→Prop

(∀y : CT isUpperCut(B(y)))

6

∧(∀ε, δ : Q+, y, z : CT y ∼ε z → B(y)(δ)→ B(z)(ε+ δ))

From there, a notion of closeness of upper cuts is defined, which states that two upper
cuts U1, U2 are ε-close if any x in U1 is such that x + ε is in U2, and vice-versa. Then, two
Balls B1, B2 are ε-close if their corresponding upper cuts at y, B1(y) and B2(y) are ε-close
for every y.

It’s straightforward that the closeness relation on upper cuts is separated (and hence
on balls), since if e.g. U1 is ε-close to U2 for every ε, then we can show that if x is in U1, by
roundedness, there’s merely a y < x in U1, but then, since U1 and U2 are (x− y)-close, the
definition of closeness yields that x is also in U2 (a mere proposition).

Now, it’s clear that every B : Ball defines a collection of upper cuts {B(y)|y : CT},
but in fact, any non-expanding function f : CT → UpperCut yields an element of Balls.
All that needs to be done to prove this is to show that the analogue of the triangle in-
equality holds, but non-expansion is good enough to guarantee this, since if y, z are
ε-close, F (y) ∼ε F (z) (here and elsewhere (for convenience) F is pr1 ◦ f) , and so in
F (y)(δ)→ F (z)(ε+ δ) due to the definition of closeness on UpperCut.

2.2.1 Families of Concentric Balls Centered At a Point

Then, in particular, for any x : CT which is x ≡ η(q), it’s possible to define the family of
concentric balls at x by defining such a non-expanding function f : CT → UpperCut by
(CT,∼)-recursion. To do so, the ∼ part of the induction has the burden of showing that f
is non-expanding. On T , f is defined by:

f(η(z)) :≡ (ε 7→ x ∼ε z,)

where the blank contains a proof of the roundedness of the premetric on T , since that
condition has the form:

∀q : T, ε : Q+, z : T q ∼ε z ↔ (∃δ : Q+ δ < ε ∧ q ∼δ z)

So taking q and z to be the ones from before, and identifying U with the upper cuts we’re
defining by q ∼ z, this is:

∀ε : Q+ U(ε)↔ (∃δ : Q+ δ < ε ∧ U(δ))

which is exactly a proof of cut roundedness.
For the limit case, let

f(lim(z)) :≡ (ε 7→ ∃δ < ε F (zδ)(ε− δ),)

Where the blank now contains the following proof of the roundedness of the upper cut:
We need to show that

F (lim(z))(ε)↔ ∃ε̄ < ε F (lim(z))(ε̄)

which, by definition, means we need to show

(∃δ < ε F (zδ)(ε− δ))↔ (∃ε̄ < ε ∃δ < ε̄ F (zδ)(ε̄− δ))

7

But by the inductive hypothesis, we know that the upper cuts for each F (zδ) are rounded,
so the left-hand side is logically equivalent to:

∃δ < ε ∃ζ < (ε− δ) F (zδ)(ζ)

whence we get the desired result equivalence by rearranging existentials and identifying

ζ = ε̄− δ
Then, for the ∼ part of the recursion, we’ll take the closeness on Upper to be the target

closeness relation, and so satisfying the hypotheses of the ∼-recursion will directly show
that the map is non-expanding. Gilbert’s formalization proves all cases combining η-
injected elements and limits, and the paper outlines what’s needed for the proof of the
η − lim case. I’ll show the η − η case here, to give a flavor for what’s going on:

We need to show that if we have q, r : T such that q ∼ε r, then as upper cuts, f(η(q)) ∼ε
f(η(r)). Now, by definition, we have that f(η(q)) = δ1 7→ x ∼δ1 q, and we also have that
f(η(r)) = δ2 7→ x ∼δ2 r. Now, fix some arbitrary δ1 in f(η(q)). We need to show that δ1 + ε
is in f(η(r)), so we need to show that:

x ∼δ1+ε r
But we know that q ∼ε r and x ∼δ1 q, so we can get that from the triangle inequality.

After all the cases have been proved, we still have the burden of going back and also
defining the case where x is not η(q), but a limit. This is done in full in Gilbert’s formal-
ization. In total, the proof will wind up having 8 cases for the ∼ relation, and 4 for the
base definitions, but this is better than Theorem 11.3.16’s proof in the HoTT book, which
required 16 closeness-relation proof cases (8 of which were omitted from the text). From
all of this, we get a rather important result.

2.2.2 ”Is contained in an ε-neighborhood of” concides with ”ε-close”

In particular, fixing x (here taken to be ≡ η(q)) and defining f , F just like in the previous
section, we have:

F (y)(ε)↔ x ∼ε y
The proof of this fact boils down to how we defined f for each case. The η case holds by
definition, and in the limit case, we can use the ∼-constructor∏

q:T

∏
y:CauchyApx

∏
ε,δ:Q+

(η(q) ∼ε−δ yδ)→ (η(q) ∼ε lim(y))

to extract an equivalence straight from the induction hypothesis and the definition of
f(lim(z)), which was:

f(lim(z)) :≡ (ε 7→ ∃δ < ε F (zδ)(ε− δ),)

So, from this, we get that ∼ is rounded and satisfies the triangle inequality, meaning that
CT is a premetric space. From that, we show fairly simply (using the same standard
arguments in HoTT, in this different context) that CT is Cauchy-complete.

Using this characterization can also show that continuous functions which agree on
η-injected elements are equal, among many other important basic results in the theory of
metric space completions.

8

2.3 Lipschitz Maps

Just like in the case of the Cauchy reals, we can define the notion of a Lipschitz map, and
prove that Lipschitz maps can be lifted to Cauchy completions. The proof of this fact is a
direct adaptation of the one in HoTT, but here’s the statement:

If we have a function f : T → A from a premetric space T to a Cauchy-complete
premetric space A, where f is Lipschitz with constant L:

∀ε : Q+, x, y : T x ∼ε y → f(x) ∼L∗ε f(y)

then f has a lift f̄ : CT → A which agrees with f on η-injected elements.

2.4 One Neat Trick!

One thing that’d be nice to know is that when we take the Cauchy completion of CT , we
”don’t pick up anything new”, meaning that the result should be equal as a type to CT .
How do we do this? Well, idCT is a Lipschitz function (constant 1), and so it has a lift to

¯idCT : CCT → CT . We know that ηT ◦ ¯idCT is the identity, since we only need to show that
it’s the identity on η-injected elements by continuity. We also know that ¯idCT ◦ ηT is the
identity by definition. Hence, ηT and ¯idCT are mutual quasi-inverses, and so CCT = CT .

This should look suspiciously familiar to the definition of µ in our discussion about
monads above. In fact, the Cauchy completion is a monad in the category of pre-metric
spaces with Lipschitz functions as morphisms! Let’s check this: The η of the monad needs
to assign a function of type T → CT on every pre-metric space T . We get this by η in the
construction of the Cauchy completion. µ ≡ C must be natural, but it’s idempotent, so
this holds. The first coherence condition also is satisfied by definition of µ as a lift of the
identity, as are the other coherence conditions (the unit laws).

Consequently, we can imagine having a domain-specific language (embedded in a
monad) where the user is free to compose chains of Lipschitz functions and automatically
lift the whole chain to the Cauchy completion.

3 Partiality

The Boolean type 2 is the target of any decision procedure (: A→ 2) on type A. In MLTT,
the type 2 (sensibly) has exactly two inhabitants (up to equality): 02 and 12. However, in
the programming language Haskell (mentioned earlier), this is not the case: Bool has three
inhabitants: 02, 12 and ⊥, where we can get ⊥ through any of the following equivalent
definitions:

⊥ = ⊥
⊥ = let f x = not (f x) in f(False)

⊥ = undefined

That is, ⊥ expresses both non-terminating and error states.
Most of the time, Haskell programmers will ignore this extra inhabitant of the Boolean

type to facilitate equational reasoning, but it actually changes the meaning of the type

9

A→ Bool to become a type of partial decision procedures. Functions of that type will only
be a decision procedure on a subset of the values of A, and the particular subset on which
it is defined may not be easy to express. Nevertheless, partial functions are often useful
to express cases where we truly do not know an answer, because it may be impossible to
in the general case (like the situation with the Halting Problem). The ⊥ value is a direct
consequence of Haskell’s support for general recursive functions combined with its lazy
reduction semantics.

However, the situation in MLTT is radically different, since every expression in MLTT
is reducible to a normal form. This is due to the restriction of recursive functions to those
definable by structural induction. For example, in Haskell, it’s perfectly fine to define a
function f : N → N where f(n) can depend explicitly on n and f(n + 2), but in MLTT,
it’s only permissible to define f(succ(n)) using n and f(n). It would seem that with this
restriction in place, defining partial functions in HoTT is not possible.

However, we could also look at the inhabitant ⊥ as representing a sort of completed
infinity, since it’s a value of Bool which doesn’t appear in a finite number of (internally-
visible) steps. Instead, we could represent ⊥ in a way that makes it into a potential in-
finity: instead of inhabitants of 2, we could consider functions f : N → B for some
suitable definition of B which gives f an interpretation as a function from a number
of steps executed so far to the current computational state. One way to formalize this
is through Capretta’s delay monad, which is most naturally expressed as a co-inductive
type, but since co-induction isn’t native to most formulations of HoTT, we could take
B to be 1 + 2 where inL values represent computations in progress, and inR values
represent finished computations (with a corresponding restriction on f to stabilize at
an inR-injected value once this happens). http://www.cs.nott.ac.uk/˜psznk/
docs/nicolai_uppsala_handoutversion.pdf However, there’s a problem with
this definition – there’s a lot more than three different such fs, up to equality! In par-
ticular, the operation ”delay the computation by a step” yields infinitely many distinct
values, instead of the simpler collection 02, 12,⊥. It would seem that we need some kind
of type quotient here, and HoTT might provide the proper tools to obtain it.

Something akin to the above remarks, along with the realization that the ”stabiliza-
tion” requirement on f is most naturally expressed by formulating a partial order, lead
the authors of Partiality, Revised to formulate the following higher inductive-inductive
type A⊥ for partial computations of type A, together with the antisymmetric, reflexive,
transitive mere relation v:

A⊥ :
η : A→ A⊥

⊥ : A⊥

sup ≡ t : IncrSeq → A⊥

α :
∏

x,y:A⊥

x v y → y v x→ x =A⊥ y

v:
x v x

x v y ∧ y v z → x v z

10

http://www.cs.nott.ac.uk/~psznk/docs/nicolai_uppsala_handoutversion.pdf
http://www.cs.nott.ac.uk/~psznk/docs/nicolai_uppsala_handoutversion.pdf

⊥ v x∏
s:IncrSeq

∏
n:N

(sn v sup(s))

∏
s:IncrSeq

(
∏
n:N

sn v x)→ sup(s) v x

∏
p,q:xvy

p = q

Where in the above, x, y, z : A⊥ wherever it’s not stated explicitly, sn denotes pr1(s)(n),
and the type of increasing sequences IncrSeq is defined by:

IncrSeq :≡
∑

s:N→A⊥

∏
n:N

s(n) v s(succ(n))

Now, since
∏

x,y:A⊥
(x v y) ∧ (y v x) is a mere relation on A⊥, α and Theorem 7.2.2

from HoTT imply that A⊥ is a set. Due to the definition of v, it’s also clear that v is a
partial order. But also, in analogy with the situation with the Cauchy completion, the
sup constructor will also imply that the partial order is ω-complete, meaning that every
increasing countable chain

s0 v s1 v s2 v ...

has a supremum (least upper bound). The ”is an upper bound” part comes from the
third-to-last constructor of v, and the ”is the least upper bound” part is derivable from
the second-to-last constructor of v.

Now, from this, we can quickly devise some examples of functions targeting 2⊥. If we
have a (partial decision problem, input) pair, and a function:

stateAt : N→ (1 + 2)

which represents the state (either inL for ”in operation”, or inR for a halted state) of the
computation after n steps, then we can define a sequence

s(n) :≡ rec1+2(2⊥, 7→ ⊥, x 7→ η(x))(stateAt(n))

which is increasing so long as we can show that stateAt starts at ⊥ and stabilizes at a
value upon halting, so we can use

sup((s, p))

to represent the result of the computation. p the derived proof that s is increasing.
Just like any other HIIT, (A⊥,v) comes with an induction principle. However, not

counting the propositional truncation on v, this induction principle would involve prov-
ing nine different constructor-based cases for every application. Luckily, unlike some
other HIITs (like the Cauchy completion), specializing the relation over v to be 1 and
forcing the function on A⊥ to target a proposition yields a widely-applicable partiality
induction principle (Lemma 3 in Partiality, Revised):

Partiality Induction

11

If P : A⊥ → Prop, and we can show P for ⊥, every η-injected element, and every
supremum of elements of A⊥ given that they all satisfy P , then ∀x : A⊥ P (x).

With a catch: to be able to use this to prove useful results, we need a characterization
of v similar to what was done for the characterization of ∼ε for the Cauchy completion.
In the formalization corresponding to Partiality, Revised, the following (partial) charac-
terization is proved by full-blown (A⊥,v)-induction (Lemma 7):

η(a) v ⊥ ↔ 0

η(a) v η(b)↔ a = b

η(a) v sup(s)↔ ∃n : N η(a) v sn

From this, we can prove (importantly) that η is injective (which follows directly from
the second line), that every two non-equal, non-bottom elements are incomparable w.r.t.
v (sov is a ”flat” ordering), and that the η-injected elements are the maximal elements of
A⊥. The proof of the last fact is a good example of an application of partiality induction.

3.1 η-injected elements are maximal

We want to show that for any y : A⊥, a : A, if

η(a) v y

then
y = η(a)

To do so, from the higher constructor of A⊥, it suffices to prove

y v η(a)

So we proceed by partiality induction. The y ≡ η(b) case follows directly from the injec-
tivity of η, and the y ≡ ⊥ case follows from the first line in the characterization of v. All
that remains is the sup case, where we suppose y ≡ sup(s) and every sn is such that if we
have any a : A,

η(a) v sn → sn v η(a)

Now, suppose that we have some a : A such that

η(a) v y

. Then, using the third line in the characterization of v, we know that there merely exists
an n : N such that:

η(a) v sn

But then, since sn is increasing, we also know that for this n, every m ≥ n is such that

η(a) v sm

12

and so for all such m, by the inductive hypothesis

sm v η(a)

But then, everything in the s chain before n is also less than η(a), so η(a) is an upper
bound on s, hence by constructors of A⊥,

sup(s) v η(a)

which completes the proof.

3.2 v is flat

The proof that the ordering is flat only appears in the formalization, but it’s a a good
example of another trick involving (you guessed it) a monad. In particular, there’s the
double-negation monad (see Appendix), which takes types to their double negation. This
is the same process as the double-negation translation for embedding classical logic in
constructive logic, and so within the double-negation monad, LEM∞ holds.

We want to show that for any x, y : A⊥

y 6= ⊥ → x 6= ⊥ → x 6= y → x 6v y

Before showing this, first

3.2.1 In ¬¬, every element of A⊥ is either ⊥ or merely η-injected

We want to show that
¬¬(x = ⊥+ ∃α : A η(α) = x)

So, proceeding by partiality induction on x, the non-supremum cases obviously imply
the result. In the supremum case, x ≡ sup(s) and within ¬¬, every sn is such that either
sn = ⊥ or merely sn = η(αn). Then, by ¬¬LEM∞ an analogue of Markov’s principle
(see Appendix), either all of sn are ⊥, in which case ⊥ is an upper bound, or there merely
exists an n for which sn is merely η(αn). In that case, since s is increasing, and all η-injected
elements are maximal, x is merely sn.

3.2.2 Back to the main task

Now, in the situation we described before, we can take each one of the premises and lift
them to the double-negation monad, yielding

¬¬(y 6= ⊥)

¬¬(x 6= ⊥)

¬¬(x 6= y)

and suppose that
¬¬(x v y)

13

from which we want to derive 0. From there, note that by the preceding proof, both x and
y are either⊥ or merely η-injected in ¬¬, but the⊥ case for each derives a double-negated
0 (equivalent to 0) when combined with the hypotheses. On the other hand, if both x and
y are η-injected in ¬¬, by the characterization of v, since x v y, x = y, which also proves
a double-negated 0. So v is a flat order.

As a consequence of this result and the preceding revelations about the structure of
A⊥, A⊥ appears to capture

4 Partiality and Topology

With that excursion into the (rather neat!) definition of A⊥ out of the way, let’s start
merging the two seemingly-different topics. First, an excursion into Topology:

4.1 Sierpinski Space

(For another neat exposition of the first few ideas here, see http://www.math3ma.
com/mathema/2016/10/6/the-sierpinski-space-and-its-special-property)

In topology, if we consider the discrete topology (everything is an open set) and the
indiscrete topology (only ∅ andA) to be ”boring” examples of topologies, the smallest ”in-
teresting” example of a topology pops up on the two-element set. Let S be a topological
space with underlying set 2, where the open sets are:

∅, {1}, {0, 1}

That is, the singleton containing 0 is closed, but the singleton containing 1 is open. S is
called the Sierpinski space.

In the category of topological spaces, this space S has a very interesting property:
Consider any continuous map f : A → S. Since f is continuous, all preimages of open
sets are open, and so in particular, f−1({1}) is open. By itself, this fact is nothing terribly
special. However, suppose that we have an open set B ⊆ A. Then, if we let fB : A → S
be the indicator function for the proposition ”element belongs to B”, we can see that f
is in fact continuous, since the pre-images of ∅, S are ∅, A, respectively, and the pre-image
of the singleton containing 1 is B. In other words, we can identify morphisms f : A → S
in Top with open subsets of A.

4.2 Back to 1⊥

Taking inspiration from the identification between morphisms targeting S and open sets,
we could try to do something interesting: We know that semidecision procedures on A
have type A → 1⊥, since semi-decision procedures yield possibly-nonterminating com-
putations with values in 1. Here, we’ll refer to η(∗) as just ∗ for convenience. What would
happen if we attempted to define a topology on A by fiat, taking pre-images of ∗ under
semi-decision procedures to be the open subsets of A? Call this attempt at a topological

14

http://www.math3ma.com/mathema/2016/10/6/the-sierpinski-space-and-its-special-property
http://www.math3ma.com/mathema/2016/10/6/the-sierpinski-space-and-its-special-property

space AS . Now, it’s clear that the constant functions at ⊥ and ∗ yield ∅ and A, respec-
tively, but to show that AS is a topological space, we still need to verify that the collection
of open sets is closed under arbitrary unions and finite intersections.

First, for unions, note that if we have two semidecision procedures f, g : A → 1⊥,
the union of the induced sets in AS would be the induced set of a 7→ f(a) ∪ g(a) where
∪ : 1⊥ → 1⊥ → 1⊥ is the least upper bound operator (or ”join”) on the poset 1⊥, which is
definable (Definition 5.5 in Gilbert) by (1⊥,v) recursion as:

⊥ ∪ y :≡ y

∗ ∪ y :≡ ∗
sup(s) ∪ y :≡ sup((n 7→ sn ∪ y, p))

where p is a proof that n 7→ sn ∪ y is increasing, based on the inductive hypothesis that
s is increasing and that − ∪ y is order-preserving (which is the burden of the [simple] v
part of the recursion to show).

Returning to the computational view of f and g, we can interpret f(a) ∪ g(a) com-
putationally as a multi-tasking semi-decision procedure which regularly alternates be-
tween performing the computation f(a) and the computation g(a), and halts upon the
first ”halt” state encountered.

However, we need to support arbitrary unions, not just finite ones. Unfortunately,
we will not be able to do this in general, but we can get pretty close: Suppose as an
extra hypothesis that the space of all semidecision procedures : A → 1⊥ is countable.
This is a very reasonable assumption from the POV of computability, since there are only
countably many programs for a universal turing machine. Then, we only need to show
that AS is closed under countable unions. (Equivalently, this is the same as demanding
that the resulting topological space will be second-countable).

To do so, we can leverage the sup constructor of 1⊥ in a fairly straightforward way:
Suppose that we have a countable collection of elements e : N → 1⊥. Then, define the
increasing sequence s by setting sn to the join of all em for m ≤ n. Then, sup(s) is the
least upper bound of all of the en. Call this construction ∪(e). Then, if c : N → (A → 1⊥)
is a countable family of semidecision procedures on A, the open set corresponding to
a 7→ ∪(n 7→ c(n)(a)) is the union of the open sets corresponding to each c(n).

Proceeding similarly to the definition of ∪, we can define ∩ (the ”meet” of two ele-
ments of 1⊥, also known as their greatest lower bound.) However, unlike ∪, ∩ does not
extend to a countable collection of elements of 1⊥. First, it would seem to be merely diffi-
cult to define, because the extension of ∪ relied on the presence of sup, and we have no inf
to work with here. But on further inspection, extending ∩ is impossible, since if we could,
we could write out all of the semi-decision (a fortiori decision) procedures ” is a Turing
machine which halts in n steps” and then intersect them to solve the Halting Problem.

4.3 A Familiar Topology in Disguise

Okay, so aside from the inspiration it gave for the above remarks on 1⊥, what does the
Sierpinski space S have anything to do with 1⊥? Well, consider the type of all semi-
decision procedures : 1⊥ → 1⊥ on 1⊥. We can define the constant function at ⊥, the

15

constant function at ∗, and id1⊥ , but that’s it! We can’t define any other such procedures
(up to equality), since (1⊥,v)-recursion requires preservation of an ordering, and the
(desirable) undefinability of inf ensures that the sup case won’t go through in the case of
an order-reversing mapping.

Now, notice that the open sets corresponding to 7→ ⊥, 7→ ∗, and id1⊥ are ∅, {⊥, ∗},
and {∗}, respectively. Those are just the open sets of the Sierpinski space S under the
identifications ⊥ ↔ 0, ∗ ↔ 1!

5 Keeping it Real: Semidecision procedures on RC

Time to extract something practical out of all of the theory above to wrap up the discus-
sion. We want a semi-decision procedure on (x, q) : RC×Q for the proposition x < rat(q),
where q : Q is arbitrary. In other words (and applying currying), we want something of
type: ∏

x:RC

∏
q:Q

∑
s:1⊥

s = ∗ ↔ x < rat(q)

So that we can get the semi-decision procedure by post-composition with the first projec-
tion. We’ll do this by RC-induction. Note that∑

s:1⊥

s = ∗ ↔ x < rat(q)

is a mere proposition (by results in Chapter 3), and so the eqRC
step of the induction may

be (thankfully) omitted.
In the case that x :≡ rat(r), note that x < rat(q)↔ r < q by an easy lemma established

in Gilbert’s formalization. Then, since the ordering on Q is decidable, we can send an
element of r < q to ∗ and an element of ¬(r < q) to ⊥ for the element s : 1⊥. The proof
that s = ∗ ↔ x < rat(q) falls out by construction.

In the case that x :≡ lim(y) for y : CauchyApx with every yε carrying an associated
semidecision procedure sε where sε(q) = ∗ ↔ yε < rat(q), note first that Q+ is countable.
Since every yε is ε-close to the limit x, to show that x < rat(q), it will suffice to show that
yε < rat(q)− ε for some ε. So if E : N→ Q+ is an enumeration of Q+, let

s = ∪(n 7→ sε(E(n)))

Then, s = ∗ → x < rat(q) since by the third line in the characterization of v, there’s
merely an n for which sn is ∗. For that sn, by the inductive hypothesis (and going back
along E), there’s merely an ε such that yε < rat(q − ε). But then, x ∼ε yε, so x < rat(q − ε).

But also, x < rat(q)→ s = ∗ since if x < rat(q), there’s merely an r such that x < rat(r)
and r < q. But then, setting ε :≡ q−r yields that xε < rat(r) = rat(q− (q−r)) = rat(q− ε),
and so by the third line in the characterization of v, ∗ lower-bounds s, and so s = ∗.

As a result, comparisons between elements of RC and Q are semi-decidable. By inter-
leaving two semi-decision procedures for x < rat(0) and −x < rat(−0), Gilbert manages
to also demonstrate a partial function isPositive : RC → 2⊥ which returns η(02) for nega-
tive numbers, η(12) for positive numbers, and ⊥ for zero.

16

Tying this back to the earlier musings on topology, it’s somewhat interesting to note
that since R is second-countable, we could consider a revised notion of topological spaces
which weakens the demand for arbitrary unions to countable ones, and still be able to ob-
tain the usual topology on R. Then, what we have just shown (using the Sierpinski space,
and the fact that intervals with rational endpoints form a base for R) is that the topology
generated by semi-decision processes on RC is at least as fine as its usual topology.

6 Appendix: ¬¬ is a monad

The usage of the ¬¬monad was demonstrated earlier in the proof thatv is a flat ordering,
but here’s a demonstration that it actually is a monad:

First, let the monadic type constructor M be M(−) ≡ ¬¬−. We need to define what
M does to morphisms f : A→ B to give it a structure as an endofunctor, so note that we
need M(f) to be of type ((A→ 0)→ 0)→ (B → 0)→ 0. Noting that we can precompose
the second argument with f and then pass the result to the first argument to get a zero,
we can define:

M(f)(mA)(LB) :≡ mA(LB ◦ f)

Then, M(idA) is id¬¬A by direct calculation, and we can also verify that it preserves com-
position of morphisms, since

M(f ◦ g)(a)(b) ≡ a(b ◦ f ◦ g)

and
M(f) ◦M(g) ≡ (a 7→ (b 7→ a(b ◦ f))) ◦ (c 7→ (d 7→ c(d ◦ g)))

≡ c 7→ (b 7→ c(b ◦ f ◦ g))

which is equivalent to M(f ◦ g) upon α-renaming and η-extensionality.
Then, for ηA : A→ ¬¬A, using a function devised in Chapter 1 exercises,

ηA(a)(f) :≡ f(a)

To show η is natural, we need
ηB ◦ f = M(f) ◦ ηA

Now,
(ηB ◦ f)(a) ≡ g 7→ g(f(a))

(M(f) ◦ ηA)(a) ≡ LB 7→ LB ◦ f(a)

so it is.
From there, the natural transformation µ : M ◦M →M is derivable as:

µA(f)(a) :≡ f(ηA(a))

since we need µA : ¬¬¬¬A → ¬¬A, and if f : ¬¬¬A → 0, a : ¬A, we can use η to push a
double-negation in front of a, then apply f . The naturality of µ follows from the naturality

17

of η, and so do all of the coherence conditions, after boiling the appearances of µ down
into ηs and rewriting.

Earlier, we used the fact that LEM∞ holds within the ¬¬ monad, which means that
within ¬¬, we have classical logic. ¬¬LEM∞ was proved as an exercise in Chapter 1 of
HoTT. In particular, we can prove a variant of Markov’s principle,

∀n : N (¬¬¬∀n : N P (n))→ (¬¬∃n : N ¬P (n))

by first supposing (by contradiction) that the conclusion isn’t true, and then using that to
explicitly construct a proof of

¬¬∀n : N P (n)

by checking P (n) on each n, which results in a 0.

18

	Monads
	In the Context of Programming
	In a Categorical Context

	The Cauchy Completion Monad
	Constructing the Cauchy Completion
	Characterizing Closeness
	Families of Concentric Balls Centered At a Point
	"Is contained in an -neighborhood of" concides with "-close"

	Lipschitz Maps
	One Neat Trick!

	Partiality
	-injected elements are maximal
	 is flat
	In , every element of A is either or merely -injected
	Back to the main task

	Partiality and Topology
	Sierpinski Space
	Back to 1
	A Familiar Topology in Disguise

	Keeping it Real: Semidecision procedures on RC
	Appendix: is a monad

