Exploring Fully-Homomorphic Encryption

Alex Grabanski

4/8/2017

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

What is fully-homomorphic encryption?

A way to perform computations on data without knowing what the data is.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

What is fully-homomorphic encryption?

 A way to perform computations on data without knowing what the data is.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

What computations?

What is fully-homomorphic encryption?

- A way to perform computations on data without knowing what the data is.
- What computations?
- The largest possible class of computations for which we could hope to assure the security of all inputs and intermediate results.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

 In the 1930's, Gödel, Church and Turing attempted to define computation [10]

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

- In the 1930's, Gödel, Church and Turing attempted to define computation [10]
- Result: General Recursive Functions, Lambda Calculus, and Turing Machines equivalent in power!

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- In the 1930's, Gödel, Church and Turing attempted to define computation [10]
- Result: General Recursive Functions, Lambda Calculus, and Turing Machines equivalent in power!
- Church-Turing Thesis: There are no more powerful notions of an "effective procedure" than using one of the above

(ロ) (同) (三) (三) (三) (三) (○) (○)

- In the 1930's, Gödel, Church and Turing attempted to define computation [10]
- Result: General Recursive Functions, Lambda Calculus, and Turing Machines equivalent in power!
- Church-Turing Thesis: There are no more powerful notions of an "effective procedure" than using one of the above
- Limitations of these systems: Halting Problem determine if a program halts, given its source code

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

- In the 1930's, Gödel, Church and Turing attempted to define computation [10]
- Result: General Recursive Functions, Lambda Calculus, and Turing Machines equivalent in power!
- Church-Turing Thesis: There are no more powerful notions of an "effective procedure" than using one of the above
- Limitations of these systems: Halting Problem determine if a program halts, given its source code

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Undecidable!

General Computation is too powerful

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- General Computation is too powerful
- Vulnerability: Side-Channel Timing Attacks (an entropy leak!)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- General Computation is too powerful
- Vulnerability: Side-Channel Timing Attacks (an entropy leak!)

(ロ) (同) (三) (三) (三) (三) (○) (○)

Impossible to avoid in general – Halting Problem!

- General Computation is too powerful
- Vulnerability: Side-Channel Timing Attacks (an entropy leak!)
- Impossible to avoid in general Halting Problem!
- So, restrict to computations which take a fixed amount of time.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

 If we allow arbitrary-size inputs outputs, entropy would leak from ciphertext sizes

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

If we allow arbitrary-size inputs outputs, entropy would leak from ciphertext sizes

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

So we have fixed time, fixed I/O size operations

 If we allow arbitrary-size inputs outputs, entropy would leak from ciphertext sizes

(ロ) (同) (三) (三) (三) (○) (○)

- So we have fixed time, fixed I/O size operations
- Exactly the class of functions computable by Boolean circuits!

Representing Boolean Circuits using $\mathbb{Z}_2[X_1, ..., X_n]$

- ► Observation: If we're in the ring Z₂:
- a+1 computes "NOT a"
- a × b computes "a AND b"
- These form a universal set of logic gates
- ► Allows expressing a boolean circuit with a single bit output as a polynomial in Z₂[X₁,...X_n].
- Example: (a+1)(b+1) + 1 = a+b+ab
- computes "a OR b through the Evaluation Homomorphism at (a, b) : ℤ₂[X₁,...X_n]− > ℤ₂"

Cryptosystems and Homomorphic Properties

- 1978 Rivest et. al developed RSA cryptosystem, based on impracticality of factoring large primes
- Ciphertexts are x^e for e in the public key, x the plaintext
- Homomorphic property: Multiplication of ciphertexts

$$x^e * y^e = (x * y)^e$$

 Question (Rivest et. al): "[is it] possible to have a privacy homomorphism with a large set of operations which is highly secure? [8]

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Cryptosystems with Homomorphic Properties

- Boneh-Goh-Nassim (BGN) cryptosystem capable of evaluating arbitrary quadratic forms [2]
- Pallier, Benaloh cryptosystems capable of evaluating sums [7], used for secure voting.
- Possible to securely evaluate an arbitrary number of additions, multiplications?
- Problem: Apparent three-way trade-off between "niceness" of structures, security, and number of homomorphic properties

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Gentry, 2009: Fully Homomorphic Encryption using Ideal Lattices

- Submitted as a PhD thesis under the advisement of Boneh (of the BGN cryptosystem)
- Made possible by a novel technique: Bootstrapping
- Abandon purely-algebraic approach, instead, assume an "error signal" in ciphertexts grow over operations
- Occasionally perform a special operation on ciphertexts to reduce the "error signal"

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Call this operation Recrypt.

Abstract Definition of the Cryptosystem

$$\begin{split} & \mathsf{KeyGen}_{\epsilon} : \{\mathbf{0},\mathbf{1}\}^* \times \mathbb{N} \to \mathcal{K} \times \mathcal{K} \\ & \mathsf{Encrypt}_{\epsilon} : \mathcal{K} \times \mathcal{P} \to \mathcal{C} \\ & \mathsf{Decrypt}_{\epsilon} : \mathcal{K} \times \mathcal{C} \to \mathcal{P} \\ & \mathsf{Evaluate}_{\epsilon} : \mathcal{K} \times \mathfrak{C}_{\epsilon} \times \mathcal{C}^n \to \mathcal{C} \end{split}$$

where \mathcal{K} is the key-space, \mathcal{C} is cipher-space, \mathcal{P} is plaintext-space, and \mathfrak{C} is the space of all "circuits" (may be viewed as tuples of multivariate polynomials).

 Second argument to KeyGen_ε is λ, the security parameter of the scheme

Correctness Condition for Evaluation

 $\forall R \in \{0,1\}^*, \lambda \in \mathbb{N}, \quad \text{if} \quad (pk, sk) = \text{KeyGen}_{\epsilon}(R, \lambda),$ then $\forall C \in \mathfrak{C}_{\epsilon}, \quad \pi_1, ..., \pi_n \in \mathcal{P} \quad \text{with} \quad \psi_i = \text{Encrypt}_{\epsilon}(pk, \pi_i),$ $\text{Decrypt}_{\epsilon}(sk, \text{Evaluate}_{\epsilon}(pk, C, (\psi_1, ..., \psi_n))) = C(\pi_1, ..., \pi_n)$

Correctness Condition for Evaluation

 $\forall R \in \{0, 1\}^*, \lambda \in \mathbb{N}, \quad \text{if} \quad (pk, sk) = \text{KeyGen}_{\epsilon}(R, \lambda),$ then $\forall C \in \mathfrak{C}_{\epsilon}, \quad \pi_1, ..., \pi_n \in \mathcal{P} \quad \text{with} \quad \psi_i = \text{Encrypt}_{\epsilon}(pk, \pi_i),$ $\text{Decrypt}_{\epsilon}(sk, \text{Evaluate}_{\epsilon}(pk, C, (\psi_1, ..., \psi_n))) = C(\pi_1, ..., \pi_n)$

Fails to rule out a trivial definition of Evaluate in favor of a definition of Decrypt which performs elaborate computations!

Correctness Condition for Evaluation

 $\forall R \in \{0, 1\}^*, \lambda \in \mathbb{N}, \quad \text{if} \quad (pk, sk) = \text{KeyGen}_{\epsilon}(R, \lambda),$ then $\forall C \in \mathfrak{C}_{\epsilon}, \quad \pi_1, ..., \pi_n \in \mathcal{P} \quad \text{with} \quad \psi_i = \text{Encrypt}_{\epsilon}(pk, \pi_i),$ $\text{Decrypt}_{\epsilon}(sk, \text{Evaluate}_{\epsilon}(pk, C, (\psi_1, ..., \psi_n))) = C(\pi_1, ..., \pi_n)$

- Fails to rule out a trivial definition of Evaluate in favor of a definition of Decrypt which performs elaborate computations!
- Solution: Require that the decryption operation be representable as a circuit D_ϵ of size polynomial in λ
- Under this requirement, the trivial definition would fail for large-enough circuits.

Secret Sauce: $Recrypt_{e}$

 $\mathsf{Recrypt}_{\epsilon}: \mathcal{K} \times \mathfrak{C}_{\epsilon} \times \mathcal{C} \times \mathcal{C} \to \mathcal{C}, \text{ defined as:}$

 $\mathsf{Recrypt}_{\epsilon}(\mathsf{pk}, \mathcal{D}_{\epsilon}, \mathsf{esk}, \psi) = \mathsf{Evaluate}_{\epsilon}(\mathsf{pk}, \mathcal{D}_{\epsilon}, (\mathsf{esk}, \mathsf{Encrypt}_{\epsilon}(\mathsf{pk}, \psi)))$

where *esk* is a ciphertext *encrypting the secret key sk*.

- ► esk is used by D_e to remove the inner encryption on a double-encryption of a plaintext.
- Homomorphically evaluated, so plaintext never visible to the outside world.

(ロ) (同) (三) (三) (三) (○) (○)

Note: Requires that esk doesn't give us practical knowledge about sk!

Application of Recrypt: Proxy Re-Encryption

- Given a plaintext encrypted under pk1 and esk1, output the same plaintext encrypted under pk2.
- Intuitively: Allows Alice to delegate handling of a secret message addressed to her to Derek.
- Does not reveal Alice's secret key.
- Useful as a primitive in multi-agent cryptosystems.
- Possible using slightly-modified definition of Recrypt_e to encrypt with pk2.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Applications of FHE

- Analysis of Genome databases without revealing participants' sequences [5]
- In general, statistical analyses on sensitive user data [6]
- Truly blind blind auctions [4]
- Search engines which *don't* know users' search queries
- Gives hope for a future of cloud computing which respects users' data privacy.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Implementing the Scheme: Lattices

- Lattice: a copy L of Zⁿ living in ℝⁿ (spanning subgroup under addition) [9]
- ► Lattice Basis: A collection of n vectors B whose span (with coefficients in Z is L.
- Hard problem on lattices: Given a lattice basis B for L, compute a new lattice basis B' which is also a basis for L, but with the shortest possible vectors.
- Called the Shortest Independent Vector Problem (SIVP), a close relative to the Closest Vector Problem (CVP)

(ロ) (同) (三) (三) (三) (○) (○)

 CVP known to be NP-Complete by reduction to the subset-sum problem.

Sample SIVP Instance

⁰Public Domain Image by User:Catslash on WikiMedia (→ (=) (=) ()

Multi-dimensional modular arithmetic

- Given a lattice basis B for L, let P(B) be the fundamental parallelpiped of B.
- *P*(*B*) is the parallelpiped spanned by vectors in *B* translated to be centered on the origin.
- ► For any vector $v \in \mathbb{R}^n$, define $v \mod B$ to be the vector(s) in $\{v + \sum_i a_i \vec{b}_i | \forall i \quad a_i \in \mathbb{Z} \land \vec{b}_i \in B\} \cap \mathcal{P}(B).$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Computation: v mod B = v − B * [B⁻¹v], where [.] represents "round to the nearest integer vector".

Implementing the Scheme: Ideal Lattices

- Consider the ring $\mathcal{R} = \mathbb{Z}[x]/f(x)$ with deg(f) = n
- Polynomials of degree < n with integer coefficients identifiable with vectors in Zⁿ, a lattice!
- ► If *I* is an ideal of *R*, by definition it's a subgroup under + which is closed under multiplication by elements of *R*.
- We can view *I* as a sub-lattice of \mathbb{Z}^n , called $\mathcal{L}(I)$.
- Such a lattice is called an *Ideal Lattice*.
- We restrict our attention to *Circulant Ideal Lattices*, which is an ideal lattice where R = Z[x]/(xⁿ − 1)

Operations in Ideal Lattices

- ► Represent the polynomial $a_{n-1}x^{n-1} + ...a_1x + a_0$ by the vector $(a_{n-1}...a_1a_0)^T$
- ► Addition of polynomials ←→ Addition of vectors
- Multiplication of polynomials?
- Billinear vector operator! a * (b + c) = a * b + a * c = (b + c) * a. General representation of multiplication: Tensors.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

A Somewhat-Homomorphic Cryptosystem: Part I

- A homomorphic cryptosystem following the same format as FHE, but on a restricted class of circuits.
- In R = Z[x]/(xⁿ − 1), let I and J be two relatively-prime ideals (I + J = R)
- Public key: Two "obfuscated" bases B_I, B^{pk}_J of I and J, and a probability distribution D over I.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

• Private key: A basis of short vectors B_J^{sk} for J.

A Somewhat-Homomorphic Cryptosystem: Part II

Encryption:

- $\psi = \text{Encrypt}_{\epsilon}(pk, \pi) = (\pi + i) \mod B_J^{pk}$
- i is a random vector in I sampled from D
- Decryption:
- $\pi = \text{Decrypt}_{\epsilon}(sk, \psi) = (\psi \mod B_J^{sk}) \mod B_I$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

A Somewhat-Homomorphic Cryptosystem: Part II

Encryption:

- $\psi = \text{Encrypt}_{\epsilon}(pk, \pi) = (\pi + i) \mod B_J^{pk}$
- i is a random vector in I sampled from D
- Decryption:
- $\pi = \mathsf{Decrypt}_{\epsilon}(\mathbf{sk}, \psi) = (\psi \mod B_J^{\mathbf{sk}}) \mod B_I$
- Works with careful choice of bases, distribution.
- ▶ View *J* as the "coarser" lattice, *I* as the "finer" lattice.

(ロ) (同) (三) (三) (三) (○) (○)

Another perspective

- Pick $\pi_j + i_j$ so that they always belong to $\mathcal{P}(B_J^{sk})$.
- Then, we are free to add/multiply ciphertexts ((π_j + i_j) mod B^{pk}_J) so long as the results stay in P(B^{sk}_J)

- Ensures that results don't wind up in a different congruence class mod B_l when we decrypt.
- $\pi_j + i_j$ is our "error signal" mentioned earlier!
- Measure size of the error by the Euclidean norm.
- ► Additions: ||*a* + *b*|| ≤ ||*a*|| + ||*b*||.
- (Binary) Multiplications: $||a * b|| \le \sqrt{n} ||a||||b||$.

Allowable Circuits

- If r_{DEC} is the size of the inscribed ball of P(B^{sk}_J), we can evaluate circuits of depth (number of nested additions, multiplications) on the order of log₂(log₂(r_{DEC})).
- Very slow-growing!
- Very conservative assumes every operation is a binary multiplication.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Security of the Somewhat-Homomorphic Scheme

- Security of this scheme reduces to the hardness of the Shortest Independent Vector Problem
- Using it, an attacker could find B_J^{sk} from B_J^{pk} !
- The problem may be radically easier in Circulant Ideal Lattices, but we do not know if that's the case.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

No. That's not good enough. We need to represent the decryption circuit.

- No. That's not good enough. We need to represent the decryption circuit.
- Representing the decryption operation (ψ mod B^{sk}_J) mod B_I requires evaluating ψ B^{sk}_J[(B^{sk}_J)⁻¹ψ]
- ► Hard to do with a small circuit because (B^{sk}_J)⁻¹ψ lives in Qⁿ, not Zⁿ

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

- No. That's not good enough. We need to represent the decryption circuit.
- Representing the decryption operation (ψ mod B^{sk}_J) mod B_I requires evaluating ψ B^{sk}_J[(B^{sk}_J)⁻¹ψ]
- ► Hard to do with a small circuit because (B^{sk}_J)⁻¹ψ lives in Qⁿ, not Zⁿ
- Need to represent rationals or a decimal approximation of intermediate computational values!

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- No. That's not good enough. We need to represent the decryption circuit.
- Representing the decryption operation (ψ mod B^{sk}_J) mod B_I requires evaluating ψ B^{sk}_J[(B^{sk}_J)⁻¹ψ]
- ► Hard to do with a small circuit because (B^{sk}_J)⁻¹ψ lives in Qⁿ, not Zⁿ
- Need to represent rationals or a decimal approximation of intermediate computational values!
- ► Without some radical modification, makes the decryption circuit D_e always too deep to evaluate.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Gentry's Fixes

- 1. Use up only half of the available room for error.
- ► Result: coordinates of $(B_J^{sk})^{-1}\psi$ are each at most $\frac{1}{4}$ away from an integer.

(ロ) (同) (三) (三) (三) (○) (○)

Less precision needed!

Gentry's Fixes

- ▶ 2. Have the *encrypter* help compute $(B_J^{sk})^{-1}\psi!$
- How? And how could that possibly be secure?
- ► Use subset-sum! Generate a large collection of matrices $A_1, ...A_m$, some (small) subset of which sums to $(B_J^{sk})^{-1}$, say $A_{s_1} + ...A_{s_n} = (B_J^{sk})^{-1}$.
- We can force this to have a unique solution.
- All $A_1, ..., A_m$ are public knowledge.
- Someone (doesn't matter who!) publically computes
 A₁ψ,...A_mψ
- Include the indices s₁,...s_n in the secret key
- ► Evaluator uses the secret key's indices and the result from the encrypter to compute A_{s1}ψ + ...A_{sn}ψ = (B_J^{sk})⁻¹ψ

Is this scheme fully-homomorphic?

Yes!

But is it a secure form of encryption?

Security of the FHE Scheme

- For an attacker to obtain the secret key, they need to solve two hard problems:
- 1. Shortest Independent Vector Problem (B^{sk}_J from B^{pk}_J)
- 2. Sparse Subset Sum Problem (subset of A_i's from B^{sk}_I.)
- Note: Solving 1 is enough to decrypt a ciphertext
- Best algorithms for each take exponential time in the worst-case, no efficient quantum algorithms are known.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Developments since 2009

- FHE is too resource-intensive for practical usage right now.
- Gentry et al. demonstrated a version of FHE which does not require bootstrapping [3], but the performance benefits if it uses bootstrapping on deep circuits.
- Gentry et al. also demonstrated a FHE scheme over the integers. [11].
- Even though circuit evaluation is very slow, evaluation is massively-parallel! [1].

(ロ) (同) (三) (三) (三) (○) (○)

Concluding Remarks

Questions?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Nathanael Black.

Homomorphic encryption and the approximate gcd problem.

2014.

- Dan Boneh, Eu-Jin Goh, and Kobbi Nissim.
 Evaluating 2-dnf formulas on ciphertexts.
 In *Theory of Cryptography Conference*, pages 325–341.
 Springer, 2005.
- Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully homomorphic encryption without bootstrapping.

ACM Transactions on Computation Theory (TOCT), 6(3):13, 2014.

Jong-Hyuk Im, Taek-Young Youn, and Mun-Kyu Lee. Privacy-preserving blind auction protocol using fully homomorphic encryption.

Advanced Science Letters, 22(9):2598–2600, 2016.

Yu Ishimaki, Kana Shimizu, Koji Nuida, and Hayato Yamana.

Poster: Privacy-preserving string search for genome sequences using fully homomorphic encryption. Bioinformatics, 2016.

- Wen-jie Lu, Shohei Kawasaki, and Jun Sakuma. Using fully homomorphic encryption for statistical analysis of categorical, ordinal and numerical data. 2017.

Pascal Paillier.

Public-key cryptosystems based on composite degree residuosity classes.

In International Conference on the Theory and Applications of Cryptographic Techniques, pages 223–238. Springer, 1999.

Ronald L Rivest, Len Adleman, and Michael L Dertouzos. On data banks and privacy homomorphisms. 1978.

Joseph H Silverman.

An introduction to the theory of lattices and applications to cryptography.

2006.

Robert I Soare.

Turing oracle machines, online computing, and three displacements in computability theory.

Annals of Pure and Applied Logic, 160(3):368–399, 2009.

(ロ) (同) (三) (三) (三) (○) (○)

Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. Fully homomorphic encryption over the integers.

Cryptology ePrint Archive, Report 2009/616, 2009. http://eprint.iacr.org/2009/616.