
Exploring Fully-Homomorphic Encryption

Alex Grabanski

4/8/2017

What is fully-homomorphic encryption?

I A way to perform computations on data without knowing
what the data is.

I What computations?
I The largest possible class of computations for which we

could hope to assure the security of all inputs and
intermediate results.

What is fully-homomorphic encryption?

I A way to perform computations on data without knowing
what the data is.

I What computations?

I The largest possible class of computations for which we
could hope to assure the security of all inputs and
intermediate results.

What is fully-homomorphic encryption?

I A way to perform computations on data without knowing
what the data is.

I What computations?
I The largest possible class of computations for which we

could hope to assure the security of all inputs and
intermediate results.

Models of computation

I In the 1930’s, Gödel, Church and Turing attempted to
define computation [10]

I Result: General Recursive Functions, Lambda Calculus,
and Turing Machines equivalent in power!

I Church-Turing Thesis: There are no more powerful notions
of an ”effective procedure” than using one of the above

I Limitations of these systems: Halting Problem – determine
if a program halts, given its source code

I Undecidable!

Models of computation

I In the 1930’s, Gödel, Church and Turing attempted to
define computation [10]

I Result: General Recursive Functions, Lambda Calculus,
and Turing Machines equivalent in power!

I Church-Turing Thesis: There are no more powerful notions
of an ”effective procedure” than using one of the above

I Limitations of these systems: Halting Problem – determine
if a program halts, given its source code

I Undecidable!

Models of computation

I In the 1930’s, Gödel, Church and Turing attempted to
define computation [10]

I Result: General Recursive Functions, Lambda Calculus,
and Turing Machines equivalent in power!

I Church-Turing Thesis: There are no more powerful notions
of an ”effective procedure” than using one of the above

I Limitations of these systems: Halting Problem – determine
if a program halts, given its source code

I Undecidable!

Models of computation

I In the 1930’s, Gödel, Church and Turing attempted to
define computation [10]

I Result: General Recursive Functions, Lambda Calculus,
and Turing Machines equivalent in power!

I Church-Turing Thesis: There are no more powerful notions
of an ”effective procedure” than using one of the above

I Limitations of these systems: Halting Problem – determine
if a program halts, given its source code

I Undecidable!

Models of computation

I In the 1930’s, Gödel, Church and Turing attempted to
define computation [10]

I Result: General Recursive Functions, Lambda Calculus,
and Turing Machines equivalent in power!

I Church-Turing Thesis: There are no more powerful notions
of an ”effective procedure” than using one of the above

I Limitations of these systems: Halting Problem – determine
if a program halts, given its source code

I Undecidable!

Allowable Models of Computation: Part I

I General Computation is too powerful

I Vulnerability: Side-Channel Timing Attacks (an entropy
leak!)

I Impossible to avoid in general – Halting Problem!
I So, restrict to computations which take a fixed amount of

time.

Allowable Models of Computation: Part I

I General Computation is too powerful
I Vulnerability: Side-Channel Timing Attacks (an entropy

leak!)

I Impossible to avoid in general – Halting Problem!
I So, restrict to computations which take a fixed amount of

time.

Allowable Models of Computation: Part I

I General Computation is too powerful
I Vulnerability: Side-Channel Timing Attacks (an entropy

leak!)
I Impossible to avoid in general – Halting Problem!

I So, restrict to computations which take a fixed amount of
time.

Allowable Models of Computation: Part I

I General Computation is too powerful
I Vulnerability: Side-Channel Timing Attacks (an entropy

leak!)
I Impossible to avoid in general – Halting Problem!
I So, restrict to computations which take a fixed amount of

time.

Allowable Models of Computation: Part II

I If we allow arbitrary-size inputs outputs, entropy would leak
from ciphertext sizes

I So we have fixed time, fixed I/O size operations
I Exactly the class of functions computable by Boolean

circuits!

Allowable Models of Computation: Part II

I If we allow arbitrary-size inputs outputs, entropy would leak
from ciphertext sizes

I So we have fixed time, fixed I/O size operations

I Exactly the class of functions computable by Boolean
circuits!

Allowable Models of Computation: Part II

I If we allow arbitrary-size inputs outputs, entropy would leak
from ciphertext sizes

I So we have fixed time, fixed I/O size operations
I Exactly the class of functions computable by Boolean

circuits!

Representing Boolean Circuits using Z2[X1, ...Xn]

I Observation: If we’re in the ring Z2:
I a + 1 computes ”NOT a”
I a× b computes ”a AND b”
I These form a universal set of logic gates
I Allows expressing a boolean circuit with a single bit output

as a polynomial in Z2[X1, ...Xn].
I Example: (a + 1)(b + 1) + 1 = a + b + ab
I computes ”a OR b through the Evaluation Homomorphism

at (a, b) : Z2[X1, ...Xn]− > Z2”

Cryptosystems and Homomorphic Properties

I 1978 – Rivest et. al developed RSA cryptosystem, based
on impracticality of factoring large primes

I Ciphertexts are xe for e in the public key, x the plaintext
I Homomorphic property: Multiplication of ciphertexts
I xe ∗ ye = (x ∗ y)e

I Question (Rivest et. al): ”[is it] possible to have a privacy
homomorphism with a large set of operations which is
highly secure? [8]

Cryptosystems with Homomorphic Properties

I Boneh-Goh-Nassim (BGN) cryptosystem – capable of
evaluating arbitrary quadratic forms [2]

I Pallier, Benaloh cryptosystems – capable of evaluating
sums [7], used for secure voting.

I Possible to securely evaluate an arbitrary number of
additions, multiplications?

I Problem: Apparent three-way trade-off between ”niceness”
of structures, security, and number of homomorphic
properties

Gentry, 2009: Fully Homomorphic Encryption using
Ideal Lattices

I Submitted as a PhD thesis under the advisement of Boneh
(of the BGN cryptosystem)

I Made possible by a novel technique: Bootstrapping
I Abandon purely-algebraic approach, instead, assume an

”error signal” in ciphertexts grow over operations
I Occasionally perform a special operation on ciphertexts to

reduce the ”error signal”
I Call this operation Recrypt.

Abstract Definition of the Cryptosystem

KeyGenε : {0,1}∗ × N→ K×K

Encryptε : K × P → C

Decryptε : K × C → P

Evaluateε : K × Cε × Cn → C

where K is the key-space, C is cipher-space, P is
plaintext-space, and C is the space of all ”circuits” (may be
viewed as tuples of multivariate polynomials).

I Second argument to KeyGenε is λ, the security parameter
of the scheme

Correctness Condition for Evaluation

∀R ∈ {0,1}∗, λ ∈ N, if (pk , sk) = KeyGenε(R, λ),

then ∀C ∈ Cε, π1, ...πn ∈ P with ψi = Encryptε(pk , πi),

Decryptε(sk ,Evaluateε(pk ,C, (ψ1, ...ψn))) = C(π1, ...πn)

I Fails to rule out a trivial definition of Evaluate in favor of a
definition of Decrypt which performs elaborate
computations!

I Solution: Require that the decryption operation be
representable as a circuit Dε of size polynomial in λ

I Under this requirement, the trivial definition would fail for
large-enough circuits.

Correctness Condition for Evaluation

∀R ∈ {0,1}∗, λ ∈ N, if (pk , sk) = KeyGenε(R, λ),

then ∀C ∈ Cε, π1, ...πn ∈ P with ψi = Encryptε(pk , πi),

Decryptε(sk ,Evaluateε(pk ,C, (ψ1, ...ψn))) = C(π1, ...πn)

I Fails to rule out a trivial definition of Evaluate in favor of a
definition of Decrypt which performs elaborate
computations!

I Solution: Require that the decryption operation be
representable as a circuit Dε of size polynomial in λ

I Under this requirement, the trivial definition would fail for
large-enough circuits.

Correctness Condition for Evaluation

∀R ∈ {0,1}∗, λ ∈ N, if (pk , sk) = KeyGenε(R, λ),

then ∀C ∈ Cε, π1, ...πn ∈ P with ψi = Encryptε(pk , πi),

Decryptε(sk ,Evaluateε(pk ,C, (ψ1, ...ψn))) = C(π1, ...πn)

I Fails to rule out a trivial definition of Evaluate in favor of a
definition of Decrypt which performs elaborate
computations!

I Solution: Require that the decryption operation be
representable as a circuit Dε of size polynomial in λ

I Under this requirement, the trivial definition would fail for
large-enough circuits.

Secret Sauce: Recryptε

Recryptε : K × Cε × C × C → C, defined as:

Recryptε(pk ,Dε,esk , ψ) = Evaluateε(pk ,Dε, (esk ,Encryptε(pk , ψ)))

where esk is a ciphertext encrypting the secret key sk .

I esk is used by Dε to remove the inner encryption on a
double-encryption of a plaintext.

I Homomorphically evaluated, so plaintext never visible to
the outside world.

I Note: Requires that esk doesn’t give us practical
knowledge about sk !

Application of Recrypt: Proxy Re-Encryption

I Given a plaintext encrypted under pk1 and esk1, output
the same plaintext encrypted under pk2.

I Intuitively: Allows Alice to delegate handling of a secret
message addressed to her to Derek.

I Does not reveal Alice’s secret key.
I Useful as a primitive in multi-agent cryptosystems.
I Possible using slightly-modified definition of Recryptε to

encrypt with pk2.

Applications of FHE

I Analysis of Genome databases without revealing
participants’ sequences [5]

I In general, statistical analyses on sensitive user data [6]
I Truly blind blind auctions [4]
I Search engines which don’t know users’ search queries
I Gives hope for a future of cloud computing which respects

users’ data privacy.

Implementing the Scheme: Lattices

I Lattice: a copy L of Zn living in Rn (spanning subgroup
under addition) [9]

I Lattice Basis: A collection of n vectors B whose span (with
coefficients in Z is L.

I Hard problem on lattices: Given a lattice basis B for L,
compute a new lattice basis B′ which is also a basis for L,
but with the shortest possible vectors.

I Called the Shortest Independent Vector Problem (SIVP), a
close relative to the Closest Vector Problem (CVP)

I CVP known to be NP-Complete by reduction to the
subset-sum problem.

Sample SIVP Instance

0Public Domain Image by User:Catslash on WikiMedia

Multi-dimensional modular arithmetic

I Given a lattice basis B for L, let P(B) be the fundamental
parallelpiped of B.

I P(B) is the parallelpiped spanned by vectors in B
translated to be centered on the origin.

I For any vector v ∈ Rn, define v mod B to be the vector(s) in
{v +

∑
i ai
~bi | ∀i ai ∈ Z ∧ ~bi ∈ B} ∩ P(B).

I Computation: v mod B = v − B ∗ [B−1v], where [.]
represents ”round to the nearest integer vector”.

Implementing the Scheme: Ideal Lattices

I Consider the ring R = Z[x]/f (x) with deg(f) = n
I Polynomials of degree < n with integer coefficients

identifiable with vectors in Zn, a lattice!
I If I is an ideal of R, by definition it’s a subgroup under +

which is closed under multiplication by elements of R.
I We can view I as a sub-lattice of Zn, called L(I).
I Such a lattice is called an Ideal Lattice.
I We restrict our attention to Circulant Ideal Lattices, which

is an ideal lattice where R = Z[x]/(xn − 1)

Operations in Ideal Lattices

I Represent the polynomial an−1xn−1 + ...a1x + a0 by the
vector (an−1...a1a0)

T

I Addition of polynomials←→ Addition of vectors
I Multiplication of polynomials?
I Billinear vector operator!

a ∗ (b + c) = a ∗ b + a ∗ c = (b + c) ∗ a. General
representation of multiplication: Tensors.

I Can represent ”multiplication by a constant vector” as a
matrix. Example (multiplication by x in Z[x]/(x3 − 1)):0 1 0

0 0 1
1 0 0

A Somewhat-Homomorphic Cryptosystem: Part I

I A homomorphic cryptosystem following the same format
as FHE, but on a restricted class of circuits.

I In R = Z[x]/(xn − 1), let I and J be two relatively-prime
ideals (I + J = R)

I Public key: Two ”obfuscated” bases BI ,B
pk
J of I and J, and

a probability distribution D over I.
I Private key: A basis of short vectors Bsk

J for J.

A Somewhat-Homomorphic Cryptosystem: Part II

I Encryption:
I ψ = Encryptε(pk , π) = (π + i) mod Bpk

J
I i is a random vector in I sampled from D
I Decryption:
I π = Decryptε(sk , ψ) = (ψmod Bsk

J)mod BI

I Works with careful choice of bases, distribution.
I View J as the ”coarser” lattice, I as the ”finer” lattice.

A Somewhat-Homomorphic Cryptosystem: Part II

I Encryption:
I ψ = Encryptε(pk , π) = (π + i) mod Bpk

J
I i is a random vector in I sampled from D
I Decryption:
I π = Decryptε(sk , ψ) = (ψmod Bsk

J)mod BI

I Works with careful choice of bases, distribution.
I View J as the ”coarser” lattice, I as the ”finer” lattice.

Another perspective

I Pick πj + ij so that they always belong to P(Bsk
J).

I Then, we are free to add/multiply ciphertexts
((πj + ij) mod Bpk

J) so long as the results stay in P(Bsk
J)

I Ensures that results don’t wind up in a different
congruence class mod BI when we decrypt.

I πj + ij is our ”error signal” mentioned earlier!
I Measure size of the error by the Euclidean norm.
I Additions: ||a + b|| ≤ ||a||+ ||b||.
I (Binary) Multiplications: ||a ∗ b|| ≤

√
n||a||||b||.

Allowable Circuits

I If rDEC is the size of the inscribed ball of P(Bsk
J), we can

evaluate circuits of depth (number of nested additions,
multiplications) on the order of log2(log2(rDEC)).

I Very slow-growing!
I Very conservative – assumes every operation is a binary

multiplication.

Security of the Somewhat-Homomorphic Scheme

I Security of this scheme reduces to the hardness of the
Shortest Independent Vector Problem

I Using it, an attacker could find Bsk
J from Bpk

J !
I The problem may be radically easier in Circulant Ideal

Lattices, but we do not know if that’s the case.

So We Have FHE, Right?

I No. That’s not good enough. We need to represent the
decryption circuit.

I Representing the decryption operation (ψmod Bsk
J)mod BI

requires evaluating ψ − Bsk
J [(Bsk

J)−1ψ]

I Hard to do with a small circuit because (Bsk
J)−1ψ lives in

Qn, not Zn

I Need to represent rationals or a decimal approximation of
intermediate computational values!

I Without some radical modification, makes the decryption
circuit Dε always too deep to evaluate.

So We Have FHE, Right?

I No. That’s not good enough. We need to represent the
decryption circuit.

I Representing the decryption operation (ψmod Bsk
J)mod BI

requires evaluating ψ − Bsk
J [(Bsk

J)−1ψ]

I Hard to do with a small circuit because (Bsk
J)−1ψ lives in

Qn, not Zn

I Need to represent rationals or a decimal approximation of
intermediate computational values!

I Without some radical modification, makes the decryption
circuit Dε always too deep to evaluate.

So We Have FHE, Right?

I No. That’s not good enough. We need to represent the
decryption circuit.

I Representing the decryption operation (ψmod Bsk
J)mod BI

requires evaluating ψ − Bsk
J [(Bsk

J)−1ψ]

I Hard to do with a small circuit because (Bsk
J)−1ψ lives in

Qn, not Zn

I Need to represent rationals or a decimal approximation of
intermediate computational values!

I Without some radical modification, makes the decryption
circuit Dε always too deep to evaluate.

So We Have FHE, Right?

I No. That’s not good enough. We need to represent the
decryption circuit.

I Representing the decryption operation (ψmod Bsk
J)mod BI

requires evaluating ψ − Bsk
J [(Bsk

J)−1ψ]

I Hard to do with a small circuit because (Bsk
J)−1ψ lives in

Qn, not Zn

I Need to represent rationals or a decimal approximation of
intermediate computational values!

I Without some radical modification, makes the decryption
circuit Dε always too deep to evaluate.

So We Have FHE, Right?

I No. That’s not good enough. We need to represent the
decryption circuit.

I Representing the decryption operation (ψmod Bsk
J)mod BI

requires evaluating ψ − Bsk
J [(Bsk

J)−1ψ]

I Hard to do with a small circuit because (Bsk
J)−1ψ lives in

Qn, not Zn

I Need to represent rationals or a decimal approximation of
intermediate computational values!

I Without some radical modification, makes the decryption
circuit Dε always too deep to evaluate.

Gentry’s Fixes

I 1. Use up only half of the available room for error.
I Result: coordinates of (Bsk

J)−1ψ are each at most 1
4 away

from an integer.
I Less precision needed!

Gentry’s Fixes

I 2. Have the encrypter help compute (Bsk
J)−1ψ!

I How? And how could that possibly be secure?
I Use subset-sum! Generate a large collection of matrices

A1, ...Am, some (small) subset of which sums to (Bsk
J)−1,

say As1 + ...Asn = (Bsk
J)−1.

I We can force this to have a unique solution.
I All A1, ...Am are public knowledge.
I Someone (doesn’t matter who!) publically computes

A1ψ, ...Amψ

I Include the indices s1, ...sn in the secret key
I Evaluator uses the secret key’s indices and the result from

the encrypter to compute As1ψ + ...Asnψ = (Bsk
J)−1ψ

Is this scheme fully-homomorphic?

Yes!

But is it a secure form of encryption?

Security of the FHE Scheme

I For an attacker to obtain the secret key, they need to solve
two hard problems:

I 1. Shortest Independent Vector Problem (Bsk
J from Bpk

J)
I 2. Sparse Subset Sum Problem (subset of Ai ’s from Bsk

J .)
I Note: Solving 1 is enough to decrypt a ciphertext
I Best algorithms for each take exponential time in the

worst-case, no efficient quantum algorithms are known.

Developments since 2009

I FHE is too resource-intensive for practical usage right now.
I Gentry et al. demonstrated a version of FHE which does

not require bootstrapping [3], but the performance benefits
if it uses bootstrapping on deep circuits.

I Gentry et al. also demonstrated a FHE scheme over the
integers. [11].

I Even though circuit evaluation is very slow, evaluation is
massively-parallel! [1].

Concluding Remarks

Questions?

Nathanael Black.
Homomorphic encryption and the approximate gcd
problem.
2014.

Dan Boneh, Eu-Jin Goh, and Kobbi Nissim.
Evaluating 2-dnf formulas on ciphertexts.
In Theory of Cryptography Conference, pages 325–341.
Springer, 2005.

Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan.
(leveled) fully homomorphic encryption without
bootstrapping.
ACM Transactions on Computation Theory (TOCT),
6(3):13, 2014.

Jong-Hyuk Im, Taek-Young Youn, and Mun-Kyu Lee.
Privacy-preserving blind auction protocol using fully
homomorphic encryption.
Advanced Science Letters, 22(9):2598–2600, 2016.

Yu Ishimaki, Kana Shimizu, Koji Nuida, and Hayato
Yamana.
Poster: Privacy-preserving string search for genome
sequences using fully homomorphic encryption.
Bioinformatics, 2016.

Wen-jie Lu, Shohei Kawasaki, and Jun Sakuma.
Using fully homomorphic encryption for statistical analysis
of categorical, ordinal and numerical data.
2017.

Pascal Paillier.
Public-key cryptosystems based on composite degree
residuosity classes.
In International Conference on the Theory and Applications
of Cryptographic Techniques, pages 223–238. Springer,
1999.

Ronald L Rivest, Len Adleman, and Michael L Dertouzos.
On data banks and privacy homomorphisms.
1978.

Joseph H Silverman.
An introduction to the theory of lattices and applications to
cryptography.
2006.

Robert I Soare.
Turing oracle machines, online computing, and three
displacements in computability theory.
Annals of Pure and Applied Logic, 160(3):368–399, 2009.

Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod
Vaikuntanathan.
Fully homomorphic encryption over the integers.
Cryptology ePrint Archive, Report 2009/616, 2009.
http://eprint.iacr.org/2009/616.

http://eprint.iacr.org/2009/616

