Exploring Fully-Homomorphic Encryption

Alex Grabanski

4/8/2017

What is fully-homomorphic encryption?

- A way to perform computations on data without knowing what the data is.

What is fully-homomorphic encryption?

- A way to perform computations on data without knowing what the data is.
- What computations?

What is fully-homomorphic encryption?

- A way to perform computations on data without knowing what the data is.
- What computations?
- The largest possible class of computations for which we could hope to assure the security of all inputs and intermediate results.

Models of computation

- In the 1930's, Gödel, Church and Turing attempted to define computation [10]

Models of computation

- In the 1930's, Gödel, Church and Turing attempted to define computation [10]
- Result: General Recursive Functions, Lambda Calculus, and Turing Machines equivalent in power!

Models of computation

- In the 1930's, Gödel, Church and Turing attempted to define computation [10]
- Result: General Recursive Functions, Lambda Calculus, and Turing Machines equivalent in power!
- Church-Turing Thesis: There are no more powerful notions of an "effective procedure" than using one of the above

Models of computation

- In the 1930's, Gödel, Church and Turing attempted to define computation [10]
- Result: General Recursive Functions, Lambda Calculus, and Turing Machines equivalent in power!
- Church-Turing Thesis: There are no more powerful notions of an "effective procedure" than using one of the above
- Limitations of these systems: Halting Problem - determine if a program halts, given its source code

Models of computation

- In the 1930's, Gödel, Church and Turing attempted to define computation [10]
- Result: General Recursive Functions, Lambda Calculus, and Turing Machines equivalent in power!
- Church-Turing Thesis: There are no more powerful notions of an "effective procedure" than using one of the above
- Limitations of these systems: Halting Problem - determine if a program halts, given its source code
- Undecidable!

Allowable Models of Computation: Part I

- General Computation is too powerful

Allowable Models of Computation: Part I

- General Computation is too powerful
- Vulnerability: Side-Channel Timing Attacks (an entropy leak!)

Allowable Models of Computation: Part I

- General Computation is too powerful
- Vulnerability: Side-Channel Timing Attacks (an entropy leak!)
- Impossible to avoid in general - Halting Problem!

Allowable Models of Computation: Part I

- General Computation is too powerful
- Vulnerability: Side-Channel Timing Attacks (an entropy leak!)
- Impossible to avoid in general - Halting Problem!
- So, restrict to computations which take a fixed amount of time.

Allowable Models of Computation: Part II

- If we allow arbitrary-size inputs outputs, entropy would leak from ciphertext sizes

Allowable Models of Computation: Part II

- If we allow arbitrary-size inputs outputs, entropy would leak from ciphertext sizes
- So we have fixed time, fixed I/O size operations

Allowable Models of Computation: Part II

- If we allow arbitrary-size inputs outputs, entropy would leak from ciphertext sizes
- So we have fixed time, fixed I/O size operations
- Exactly the class of functions computable by Boolean circuits!

Representing Boolean Circuits using $\mathbb{Z}_{2}\left[X_{1}, \ldots X_{n}\right]$

- Observation: If we're in the ring \mathbb{Z}_{2} :
- $a+1$ computes "NOT a"
- $a \times b$ computes "a AND b"
- These form a universal set of logic gates
- Allows expressing a boolean circuit with a single bit output as a polynomial in $\mathbb{Z}_{2}\left[X_{1}, \ldots X_{n}\right]$.
- Example: $(a+1)(b+1)+1=a+b+a b$
- computes "a OR b through the Evaluation Homomorphism at $(\mathrm{a}, \mathrm{b}): \mathbb{Z}_{2}\left[X_{1}, \ldots X_{n}\right]->\mathbb{Z}_{2}$ "

Cryptosystems and Homomorphic Properties

- 1978 - Rivest et. al developed RSA cryptosystem, based on impracticality of factoring large primes
- Ciphertexts are x^{e} for e in the public key, x the plaintext
- Homomorphic property: Multiplication of ciphertexts
- $x^{e} * y^{e}=(x * y)^{e}$
- Question (Rivest et. al): "[is it] possible to have a privacy homomorphism with a large set of operations which is highly secure? [8]

Cryptosystems with Homomorphic Properties

- Boneh-Goh-Nassim (BGN) cryptosystem - capable of evaluating arbitrary quadratic forms [2]
- Pallier, Benaloh cryptosystems - capable of evaluating sums [7], used for secure voting.
- Possible to securely evaluate an arbitrary number of additions, multiplications?
- Problem: Apparent three-way trade-off between "niceness" of structures, security, and number of homomorphic properties

Gentry, 2009: Fully Homomorphic Encryption using Ideal Lattices

- Submitted as a PhD thesis under the advisement of Boneh (of the BGN cryptosystem)
- Made possible by a novel technique: Bootstrapping
- Abandon purely-algebraic approach, instead, assume an "error signal" in ciphertexts grow over operations
- Occasionally perform a special operation on ciphertexts to reduce the "error signal"
- Call this operation Recrypt.

Abstract Definition of the Cryptosystem

$$
\text { KeyGen }_{\epsilon}:\{0,1\}^{*} \times \mathbb{N} \rightarrow \mathcal{K} \times \mathcal{K}
$$

$$
\text { Encrypt }_{\epsilon}: \mathcal{K} \times \mathcal{P} \rightarrow \mathcal{C}
$$

$$
\text { Decrypt }_{\epsilon}: \mathcal{K} \times \mathcal{C} \rightarrow \mathcal{P}
$$

$$
\text { Evaluate }_{\epsilon}: \mathcal{K} \times \mathfrak{C}_{\epsilon} \times \mathcal{C}^{n} \rightarrow \mathcal{C}
$$

where \mathcal{K} is the key-space, \mathcal{C} is cipher-space, \mathcal{P} is plaintext-space, and \mathfrak{C} is the space of all "circuits" (may be viewed as tuples of multivariate polynomials).

- Second argument to KeyGen ${ }_{\epsilon}$ is λ, the security parameter of the scheme

Correctness Condition for Evaluation

$$
\forall R \in\{0,1\}^{*}, \lambda \in \mathbb{N}, \quad \text { if } \quad(p k, s k)=\operatorname{KeyGen}_{\epsilon}(R, \lambda)
$$

then $\forall C \in \mathfrak{C}_{\epsilon}, \quad \pi_{1}, \ldots \pi_{n} \in \mathcal{P} \quad$ with $\quad \psi_{i}=\operatorname{Encrypt}_{\epsilon}\left(p k, \pi_{i}\right)$,
$\operatorname{Decrypt}_{\epsilon}\left(s k\right.$, Evaluate $\left._{\epsilon}\left(p k, C,\left(\psi_{1}, \ldots \psi_{n}\right)\right)\right)=C\left(\pi_{1}, \ldots \pi_{n}\right)$

Correctness Condition for Evaluation

$$
\forall R \in\{0,1\}^{*}, \lambda \in \mathbb{N}, \quad \text { if } \quad(p k, s k)=\operatorname{KeyGen}_{\epsilon}(R, \lambda)
$$

then $\forall C \in \mathfrak{C}_{\epsilon}, \quad \pi_{1}, \ldots \pi_{n} \in \mathcal{P} \quad$ with $\quad \psi_{i}=\operatorname{Encrypt}_{\epsilon}\left(p k, \pi_{i}\right)$,
$\operatorname{Decrypt}_{\epsilon}\left(s k\right.$, Evaluate $\left._{\epsilon}\left(p k, C,\left(\psi_{1}, \ldots \psi_{n}\right)\right)\right)=C\left(\pi_{1}, \ldots \pi_{n}\right)$

- Fails to rule out a trivial definition of Evaluate in favor of a definition of Decrypt which performs elaborate computations!

Correctness Condition for Evaluation

$$
\forall R \in\{0,1\}^{*}, \lambda \in \mathbb{N}, \quad \text { if } \quad(p k, s k)=\operatorname{KeyGen}_{\epsilon}(R, \lambda)
$$

then $\forall C \in \mathfrak{C}_{\epsilon}, \quad \pi_{1}, \ldots \pi_{n} \in \mathcal{P} \quad$ with $\quad \psi_{i}=\operatorname{Encrypt}_{\epsilon}\left(p k, \pi_{i}\right)$,
$\operatorname{Decrypt}_{\epsilon}\left(s k\right.$, Evaluate $\left._{\epsilon}\left(p k, C,\left(\psi_{1}, \ldots \psi_{n}\right)\right)\right)=C\left(\pi_{1}, \ldots \pi_{n}\right)$

- Fails to rule out a trivial definition of Evaluate in favor of a definition of Decrypt which performs elaborate computations!
- Solution: Require that the decryption operation be representable as a circuit \mathcal{D}_{ϵ} of size polynomial in λ
- Under this requirement, the trivial definition would fail for large-enough circuits.

Secret Sauce: Recrypt ϵ_{ϵ}

Recrypt $_{\epsilon}: \mathcal{K} \times \mathfrak{C}_{\epsilon} \times \mathcal{C} \times \mathcal{C} \rightarrow \mathcal{C}$, defined as:
$\operatorname{Recrypt}_{\epsilon}\left(p k, \mathcal{D}_{\epsilon}\right.$, esk, $\left.\psi\right)=\operatorname{Evaluate}_{\epsilon}\left(p k, \mathcal{D}_{\epsilon},\left(\right.\right.$ esk, $\left.\left.\operatorname{Encrypt}_{\epsilon}(p k, \psi)\right)\right)$
where esk is a ciphertext encrypting the secret key sk.

- esk is used by \mathcal{D}_{ϵ} to remove the inner encryption on a double-encryption of a plaintext.
- Homomorphically evaluated, so plaintext never visible to the outside world.
- Note: Requires that esk doesn't give us practical knowledge about sk!

Application of Recrypt: Proxy Re-Encryption

- Given a plaintext encrypted under pk1 and esk1, output the same plaintext encrypted under pk2.
- Intuitively: Allows Alice to delegate handling of a secret message addressed to her to Derek.
- Does not reveal Alice's secret key.
- Useful as a primitive in multi-agent cryptosystems.
- Possible using slightly-modified definition of Recrypt ${ }_{\epsilon}$ to encrypt with pk2.

Applications of FHE

- Analysis of Genome databases without revealing participants' sequences [5]
- In general, statistical analyses on sensitive user data [6]
- Truly blind blind auctions [4]
- Search engines which don't know users' search queries
- Gives hope for a future of cloud computing which respects users' data privacy.

Implementing the Scheme: Lattices

- Lattice: a copy L of \mathbb{Z}^{n} living in \mathbb{R}^{n} (spanning subgroup under addition) [9]
- Lattice Basis: A collection of n vectors B whose span (with coefficients in \mathbb{Z} is L.
- Hard problem on lattices: Given a lattice basis B for L, compute a new lattice basis B^{\prime} which is also a basis for L, but with the shortest possible vectors.
- Called the Shortest Independent Vector Problem (SIVP), a close relative to the Closest Vector Problem (CVP)
- CVP known to be NP-Complete by reduction to the subset-sum problem.

Sample SIVP Instance

${ }^{0}$ Public Domain Image by User:Catslash on WikiMedia

Multi-dimensional modular arithmetic

- Given a lattice basis B for L, let $\mathcal{P}(B)$ be the fundamental parallelpiped of B.
- $\mathcal{P}(B)$ is the parallelpiped spanned by vectors in B translated to be centered on the origin.
- For any vector $v \in \mathbb{R}^{n}$, define v mod B to be the vector(s) in $\left\{v+\sum_{i} a_{i} \vec{b}_{i} \mid \forall i \quad a_{i} \in \mathbb{Z} \wedge \vec{b}_{i} \in B\right\} \cap \mathcal{P}(B)$.
- Computation: $v \bmod B=v-\boldsymbol{B} *\left[\boldsymbol{B}^{-1} v\right]$, where [.] represents "round to the nearest integer vector".

Implementing the Scheme: Ideal Lattices

- Consider the ring $\mathcal{R}=\mathbb{Z}[x] / f(x)$ with $\operatorname{deg}(f)=n$
- Polynomials of degree $<n$ with integer coefficients identifiable with vectors in \mathbb{Z}^{n}, a lattice!
- If I is an ideal of \mathcal{R}, by definition it's a subgroup under + which is closed under multiplication by elements of \mathcal{R}.
- We can view I as a sub-lattice of \mathbb{Z}^{n}, called $\mathcal{L}(I)$.
- Such a lattice is called an Ideal Lattice.
- We restrict our attention to Circulant Ideal Lattices, which is an ideal lattice where $\mathcal{R}=\mathbb{Z}[x] /\left(x^{n}-1\right)$

Operations in Ideal Lattices

- Represent the polynomial $a_{n-1} x^{n-1}+\ldots a_{1} x+a_{0}$ by the vector $\left(a_{n-1} \ldots a_{1} a_{0}\right)^{T}$
- Addition of polynomials $\longleftrightarrow \rightarrow$ Addition of vectors
- Multiplication of polynomials?
- Billinear vector operator! $a *(b+c)=a * b+a * c=(b+c) * a$. General representation of multiplication: Tensors.
- Can represent "multiplication by a constant vector" as a matrix. Example (multiplication by x in $\mathbb{Z}[x] /\left(x^{3}-1\right)$):
$\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right]$

A Somewhat-Homomorphic Cryptosystem: Part I

- A homomorphic cryptosystem following the same format as FHE, but on a restricted class of circuits.
- In $\mathcal{R}=\mathbb{Z}[x] /\left(x^{n}-1\right)$, let I and J be two relatively-prime ideals $(I+J=\mathcal{R})$
- Public key: Two "obfuscated" bases $B_{I}, B_{J}^{p k}$ of I and J, and a probability distribution D over I.
- Private key: A basis of short vectors $B_{J}^{s k}$ for J.

A Somewhat-Homomorphic Cryptosystem: Part II

- Encryption:
- $\psi=\operatorname{Encrypt}_{\epsilon}(p k, \pi)=(\pi+i) \bmod B_{J}^{p k}$
- i is a random vector in I sampled from D
- Decryption:
- $\pi=\operatorname{Decrypt}_{\epsilon}(s k, \psi)=\left(\psi \bmod B_{J}^{s k}\right) \bmod B_{l}$

A Somewhat-Homomorphic Cryptosystem: Part II

- Encryption:
- $\psi=\operatorname{Encrypt}_{\epsilon}(p k, \pi)=(\pi+i) \bmod B_{J}^{p k}$
- i is a random vector in I sampled from D
- Decryption:
- $\pi=\operatorname{Decrypt}_{\epsilon}(s k, \psi)=\left(\psi \bmod B_{J}^{s k}\right) \bmod B_{I}$
- Works with careful choice of bases, distribution.
- View J as the "coarser" lattice, I as the "finer" lattice.

Another perspective

- Pick $\pi_{j}+i_{j}$ so that they always belong to $\mathcal{P}\left(B_{j}^{s k}\right)$.
- Then, we are free to add/multiply ciphertexts $\left(\left(\pi_{j}+i_{j}\right) \bmod B_{J}^{p k}\right)$ so long as the results stay in $\mathcal{P}\left(B_{j}^{\text {sk }}\right)$
- Ensures that results don't wind up in a different congruence class $\bmod B_{l}$ when we decrypt.
- $\pi_{j}+i_{j}$ is our "error signal" mentioned earlier!
- Measure size of the error by the Euclidean norm.
- Additions: $\|a+b\| \leq\|a\|+\|b\|$.
- (Binary) Multiplications: $\| a * b| | \leq \sqrt{n}| | a| || | b| |$.

Allowable Circuits

- If $r_{D E C}$ is the size of the inscribed ball of $\mathcal{P}\left(B_{J}^{s k}\right)$, we can evaluate circuits of depth (number of nested additions, multiplications) on the order of $\log _{2}\left(\log _{2}\left(r_{D E C}\right)\right)$.
- Very slow-growing!
- Very conservative - assumes every operation is a binary multiplication.

Security of the Somewhat-Homomorphic Scheme

- Security of this scheme reduces to the hardness of the Shortest Independent Vector Problem
- Using it, an attacker could find $B_{J}^{s k}$ from $B_{J}^{p k}$!
- The problem may be radically easier in Circulant Ideal Lattices, but we do not know if that's the case.

So We Have FHE, Right?

So We Have FHE, Right?

- No. That's not good enough. We need to represent the decryption circuit.

So We Have FHE, Right?

- No. That's not good enough. We need to represent the decryption circuit.
- Representing the decryption operation $\left(\psi \bmod B_{J}^{s k}\right) \bmod B_{I}$ requires evaluating $\psi-B_{J}^{s k}\left[\left(B_{J}^{s k}\right)^{-1} \psi\right]$
- Hard to do with a small circuit because $\left(B_{J}^{s k}\right)^{-1} \psi$ lives in \mathbb{Q}^{n}, not \mathbb{Z}^{n}

So We Have FHE, Right?

- No. That's not good enough. We need to represent the decryption circuit.
- Representing the decryption operation $\left(\psi \bmod B_{J}^{s k}\right) \bmod B_{I}$ requires evaluating $\psi-B_{J}^{s k}\left[\left(B_{J}^{s k}\right)^{-1} \psi\right]$
- Hard to do with a small circuit because $\left(B_{J}^{s k}\right)^{-1} \psi$ lives in \mathbb{Q}^{n}, not \mathbb{Z}^{n}
- Need to represent rationals or a decimal approximation of intermediate computational values!

So We Have FHE, Right?

- No. That's not good enough. We need to represent the decryption circuit.
- Representing the decryption operation $\left(\psi \bmod B_{J}^{s k}\right) \bmod B_{I}$ requires evaluating $\psi-B_{J}^{s k}\left[\left(B_{J}^{s k}\right)^{-1} \psi\right]$
- Hard to do with a small circuit because $\left(B_{J}^{s k}\right)^{-1} \psi$ lives in \mathbb{Q}^{n}, not \mathbb{Z}^{n}
- Need to represent rationals or a decimal approximation of intermediate computational values!
- Without some radical modification, makes the decryption circuit \mathcal{D}_{ϵ} always too deep to evaluate.

Gentry's Fixes

- 1. Use up only half of the available room for error.
- Result: coordinates of $\left(B_{J}^{s k}\right)^{-1} \psi$ are each at most $\frac{1}{4}$ away from an integer.
- Less precision needed!

Gentry's Fixes

- 2. Have the encrypter help compute $\left(B_{J}^{s k}\right)^{-1} \psi$!
- How? And how could that possibly be secure?
- Use subset-sum! Generate a large collection of matrices $A_{1}, \ldots A_{m}$, some (small) subset of which sums to $\left(B_{J}^{s k}\right)^{-1}$, say $A_{s_{1}}+\ldots A_{s_{n}}=\left(B_{J}^{s k}\right)^{-1}$.
- We can force this to have a unique solution.
- All $A_{1}, \ldots A_{m}$ are public knowledge.
- Someone (doesn't matter who!) publically computes $A_{1} \psi, \ldots A_{m} \psi$
- Include the indices $s_{1}, \ldots s_{n}$ in the secret key
- Evaluator uses the secret key's indices and the result from the encrypter to compute $A_{s_{1}} \psi+\ldots A_{s_{n}} \psi=\left(B_{J}^{s k}\right)^{-1} \psi$

Is this scheme fully-homomorphic?

Yes!

But is it a secure form of encryption?

Security of the FHE Scheme

- For an attacker to obtain the secret key, they need to solve two hard problems:
- 1. Shortest Independent Vector Problem ($B_{J}^{s k}$ from $B_{J}^{p k}$)
- 2. Sparse Subset Sum Problem (subset of A_{i} 's from $B_{j}^{s k}$.)
- Note: Solving 1 is enough to decrypt a ciphertext
- Best algorithms for each take exponential time in the worst-case, no efficient quantum algorithms are known.

Developments since 2009

- FHE is too resource-intensive for practical usage right now.
- Gentry et al. demonstrated a version of FHE which does not require bootstrapping [3], but the performance benefits if it uses bootstrapping on deep circuits.
- Gentry et al. also demonstrated a FHE scheme over the integers. [11].
- Even though circuit evaluation is very slow, evaluation is massively-parallel! [1].

Concluding Remarks

Questions?

Nathanael Black．
Homomorphic encryption and the approximate gcd problem．
2014.

围 Dan Boneh，Eu－Jin Goh，and Kobbi Nissim．
Evaluating 2－dnf formulas on ciphertexts．
In Theory of Cryptography Conference，pages 325－341．
Springer， 2005.
围 Zvika Brakerski，Craig Gentry，and Vinod Vaikuntanathan． （leveled）fully homomorphic encryption without bootstrapping．
ACM Transactions on Computation Theory（TOCT）， 6（3）：13， 2014.

葍 Jong－Hyuk Im，Taek－Young Youn，and Mun－Kyu Lee． Privacy－preserving blind auction protocol using fully homomorphic encryption．
Advanced Science Letters，22（9）：2598－2600， 2016.

目 Yu Ishimaki，Kana Shimizu，Koji Nuida，and Hayato Yamana．
Poster：Privacy－preserving string search for genome sequences using fully homomorphic encryption．
Bioinformatics， 2016.
葍 Wen－jie Lu，Shohei Kawasaki，and Jun Sakuma． Using fully homomorphic encryption for statistical analysis of categorical，ordinal and numerical data． 2017.

國 Pascal Paillier．
Public－key cryptosystems based on composite degree residuosity classes．
In International Conference on the Theory and Applications of Cryptographic Techniques，pages 223－238．Springer， 1999.

Ronald L Rivest，Len Adleman，and Michael L Dertouzos． On data banks and privacy homomorphisms． 1978.

目 Joseph H Silverman．
An introduction to the theory of lattices and applications to cryptography．
2006.

围 Robert I Soare．
Turing oracle machines，online computing，and three displacements in computability theory．
Annals of Pure and Applied Logic，160（3）：368－399， 2009.
雷 Marten van Dijk，Craig Gentry，Shai Halevi，and Vinod Vaikuntanathan．
Fully homomorphic encryption over the integers．
Cryptology ePrint Archive，Report 2009／616， 2009.
http：／／eprint．iacr．org／2009／616．

