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What is fully-homomorphic encryption?

I A way to perform computations on data without knowing
what the data is.

I What computations?
I The largest possible class of computations for which we

could hope to assure the security of all inputs and
intermediate results.
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Models of computation

I In the 1930’s, Gödel, Church and Turing attempted to
define computation [10]

I Result: General Recursive Functions, Lambda Calculus,
and Turing Machines equivalent in power!

I Church-Turing Thesis: There are no more powerful notions
of an ”effective procedure” than using one of the above

I Limitations of these systems: Halting Problem – determine
if a program halts, given its source code

I Undecidable!
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Allowable Models of Computation: Part I

I General Computation is too powerful

I Vulnerability: Side-Channel Timing Attacks (an entropy
leak!)

I Impossible to avoid in general – Halting Problem!
I So, restrict to computations which take a fixed amount of

time.
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Allowable Models of Computation: Part II

I If we allow arbitrary-size inputs outputs, entropy would leak
from ciphertext sizes

I So we have fixed time, fixed I/O size operations
I Exactly the class of functions computable by Boolean

circuits!
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Representing Boolean Circuits using Z2[X1, ...Xn]

I Observation: If we’re in the ring Z2:
I a + 1 computes ”NOT a”
I a× b computes ”a AND b”
I These form a universal set of logic gates
I Allows expressing a boolean circuit with a single bit output

as a polynomial in Z2[X1, ...Xn].
I Example: (a + 1)(b + 1) + 1 = a + b + ab
I computes ”a OR b through the Evaluation Homomorphism

at (a, b) : Z2[X1, ...Xn]− > Z2”



Cryptosystems and Homomorphic Properties

I 1978 – Rivest et. al developed RSA cryptosystem, based
on impracticality of factoring large primes

I Ciphertexts are xe for e in the public key, x the plaintext
I Homomorphic property: Multiplication of ciphertexts
I xe ∗ ye = (x ∗ y)e

I Question (Rivest et. al): ”[is it] possible to have a privacy
homomorphism with a large set of operations which is
highly secure? [8]



Cryptosystems with Homomorphic Properties

I Boneh-Goh-Nassim (BGN) cryptosystem – capable of
evaluating arbitrary quadratic forms [2]

I Pallier, Benaloh cryptosystems – capable of evaluating
sums [7], used for secure voting.

I Possible to securely evaluate an arbitrary number of
additions, multiplications?

I Problem: Apparent three-way trade-off between ”niceness”
of structures, security, and number of homomorphic
properties



Gentry, 2009: Fully Homomorphic Encryption using
Ideal Lattices

I Submitted as a PhD thesis under the advisement of Boneh
(of the BGN cryptosystem)

I Made possible by a novel technique: Bootstrapping
I Abandon purely-algebraic approach, instead, assume an

”error signal” in ciphertexts grow over operations
I Occasionally perform a special operation on ciphertexts to

reduce the ”error signal”
I Call this operation Recrypt.



Abstract Definition of the Cryptosystem

KeyGenε : {0,1}∗ × N→ K×K

Encryptε : K × P → C

Decryptε : K × C → P

Evaluateε : K × Cε × Cn → C

where K is the key-space, C is cipher-space, P is
plaintext-space, and C is the space of all ”circuits” (may be
viewed as tuples of multivariate polynomials).

I Second argument to KeyGenε is λ, the security parameter
of the scheme



Correctness Condition for Evaluation

∀R ∈ {0,1}∗, λ ∈ N, if (pk , sk) = KeyGenε(R, λ),

then ∀C ∈ Cε, π1, ...πn ∈ P with ψi = Encryptε(pk , πi),

Decryptε(sk ,Evaluateε(pk ,C, (ψ1, ...ψn))) = C(π1, ...πn)

I Fails to rule out a trivial definition of Evaluate in favor of a
definition of Decrypt which performs elaborate
computations!

I Solution: Require that the decryption operation be
representable as a circuit Dε of size polynomial in λ

I Under this requirement, the trivial definition would fail for
large-enough circuits.



Correctness Condition for Evaluation

∀R ∈ {0,1}∗, λ ∈ N, if (pk , sk) = KeyGenε(R, λ),

then ∀C ∈ Cε, π1, ...πn ∈ P with ψi = Encryptε(pk , πi),

Decryptε(sk ,Evaluateε(pk ,C, (ψ1, ...ψn))) = C(π1, ...πn)

I Fails to rule out a trivial definition of Evaluate in favor of a
definition of Decrypt which performs elaborate
computations!

I Solution: Require that the decryption operation be
representable as a circuit Dε of size polynomial in λ

I Under this requirement, the trivial definition would fail for
large-enough circuits.



Correctness Condition for Evaluation

∀R ∈ {0,1}∗, λ ∈ N, if (pk , sk) = KeyGenε(R, λ),

then ∀C ∈ Cε, π1, ...πn ∈ P with ψi = Encryptε(pk , πi),

Decryptε(sk ,Evaluateε(pk ,C, (ψ1, ...ψn))) = C(π1, ...πn)

I Fails to rule out a trivial definition of Evaluate in favor of a
definition of Decrypt which performs elaborate
computations!

I Solution: Require that the decryption operation be
representable as a circuit Dε of size polynomial in λ

I Under this requirement, the trivial definition would fail for
large-enough circuits.



Secret Sauce: Recryptε

Recryptε : K × Cε × C × C → C, defined as:

Recryptε(pk ,Dε,esk , ψ) = Evaluateε(pk ,Dε, (esk ,Encryptε(pk , ψ)))

where esk is a ciphertext encrypting the secret key sk .

I esk is used by Dε to remove the inner encryption on a
double-encryption of a plaintext.

I Homomorphically evaluated, so plaintext never visible to
the outside world.

I Note: Requires that esk doesn’t give us practical
knowledge about sk !



Application of Recrypt: Proxy Re-Encryption

I Given a plaintext encrypted under pk1 and esk1, output
the same plaintext encrypted under pk2.

I Intuitively: Allows Alice to delegate handling of a secret
message addressed to her to Derek.

I Does not reveal Alice’s secret key.
I Useful as a primitive in multi-agent cryptosystems.
I Possible using slightly-modified definition of Recryptε to

encrypt with pk2.



Applications of FHE

I Analysis of Genome databases without revealing
participants’ sequences [5]

I In general, statistical analyses on sensitive user data [6]
I Truly blind blind auctions [4]
I Search engines which don’t know users’ search queries
I Gives hope for a future of cloud computing which respects

users’ data privacy.



Implementing the Scheme: Lattices

I Lattice: a copy L of Zn living in Rn (spanning subgroup
under addition) [9]

I Lattice Basis: A collection of n vectors B whose span (with
coefficients in Z is L.

I Hard problem on lattices: Given a lattice basis B for L,
compute a new lattice basis B′ which is also a basis for L,
but with the shortest possible vectors.

I Called the Shortest Independent Vector Problem (SIVP), a
close relative to the Closest Vector Problem (CVP)

I CVP known to be NP-Complete by reduction to the
subset-sum problem.



Sample SIVP Instance

0Public Domain Image by User:Catslash on WikiMedia



Multi-dimensional modular arithmetic

I Given a lattice basis B for L, let P(B) be the fundamental
parallelpiped of B.

I P(B) is the parallelpiped spanned by vectors in B
translated to be centered on the origin.

I For any vector v ∈ Rn, define v mod B to be the vector(s) in
{v +

∑
i ai
~bi | ∀i ai ∈ Z ∧ ~bi ∈ B} ∩ P(B).

I Computation: v mod B = v − B ∗ [B−1v ], where [.]
represents ”round to the nearest integer vector”.



Implementing the Scheme: Ideal Lattices

I Consider the ring R = Z[x ]/f (x) with deg(f ) = n
I Polynomials of degree < n with integer coefficients

identifiable with vectors in Zn, a lattice!
I If I is an ideal of R, by definition it’s a subgroup under +

which is closed under multiplication by elements of R.
I We can view I as a sub-lattice of Zn, called L(I).
I Such a lattice is called an Ideal Lattice.
I We restrict our attention to Circulant Ideal Lattices, which

is an ideal lattice where R = Z[x ]/(xn − 1)



Operations in Ideal Lattices

I Represent the polynomial an−1xn−1 + ...a1x + a0 by the
vector (an−1...a1a0)

T

I Addition of polynomials←→ Addition of vectors
I Multiplication of polynomials?
I Billinear vector operator!

a ∗ (b + c) = a ∗ b + a ∗ c = (b + c) ∗ a. General
representation of multiplication: Tensors.

I Can represent ”multiplication by a constant vector” as a
matrix. Example (multiplication by x in Z[x ]/(x3 − 1)):0 1 0

0 0 1
1 0 0





A Somewhat-Homomorphic Cryptosystem: Part I

I A homomorphic cryptosystem following the same format
as FHE, but on a restricted class of circuits.

I In R = Z[x ]/(xn − 1), let I and J be two relatively-prime
ideals (I + J = R)

I Public key: Two ”obfuscated” bases BI ,B
pk
J of I and J, and

a probability distribution D over I.
I Private key: A basis of short vectors Bsk

J for J.



A Somewhat-Homomorphic Cryptosystem: Part II

I Encryption:
I ψ = Encryptε(pk , π) = (π + i) mod Bpk

J
I i is a random vector in I sampled from D
I Decryption:
I π = Decryptε(sk , ψ) = (ψmod Bsk

J )mod BI

I Works with careful choice of bases, distribution.
I View J as the ”coarser” lattice, I as the ”finer” lattice.
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Another perspective

I Pick πj + ij so that they always belong to P(Bsk
J ).

I Then, we are free to add/multiply ciphertexts
((πj + ij) mod Bpk

J ) so long as the results stay in P(Bsk
J )

I Ensures that results don’t wind up in a different
congruence class mod BI when we decrypt.

I πj + ij is our ”error signal” mentioned earlier!
I Measure size of the error by the Euclidean norm.
I Additions: ||a + b|| ≤ ||a||+ ||b||.
I (Binary) Multiplications: ||a ∗ b|| ≤

√
n||a||||b||.



Allowable Circuits

I If rDEC is the size of the inscribed ball of P(Bsk
J ), we can

evaluate circuits of depth (number of nested additions,
multiplications) on the order of log2(log2(rDEC)).

I Very slow-growing!
I Very conservative – assumes every operation is a binary

multiplication.



Security of the Somewhat-Homomorphic Scheme

I Security of this scheme reduces to the hardness of the
Shortest Independent Vector Problem

I Using it, an attacker could find Bsk
J from Bpk

J !
I The problem may be radically easier in Circulant Ideal

Lattices, but we do not know if that’s the case.



So We Have FHE, Right?

I No. That’s not good enough. We need to represent the
decryption circuit.

I Representing the decryption operation (ψmod Bsk
J )mod BI

requires evaluating ψ − Bsk
J [(Bsk

J )−1ψ]

I Hard to do with a small circuit because (Bsk
J )−1ψ lives in

Qn, not Zn

I Need to represent rationals or a decimal approximation of
intermediate computational values!

I Without some radical modification, makes the decryption
circuit Dε always too deep to evaluate.
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Gentry’s Fixes

I 1. Use up only half of the available room for error.
I Result: coordinates of (Bsk

J )−1ψ are each at most 1
4 away

from an integer.
I Less precision needed!



Gentry’s Fixes

I 2. Have the encrypter help compute (Bsk
J )−1ψ!

I How? And how could that possibly be secure?
I Use subset-sum! Generate a large collection of matrices

A1, ...Am, some (small) subset of which sums to (Bsk
J )−1,

say As1 + ...Asn = (Bsk
J )−1.

I We can force this to have a unique solution.
I All A1, ...Am are public knowledge.
I Someone (doesn’t matter who!) publically computes

A1ψ, ...Amψ

I Include the indices s1, ...sn in the secret key
I Evaluator uses the secret key’s indices and the result from

the encrypter to compute As1ψ + ...Asnψ = (Bsk
J )−1ψ



Is this scheme fully-homomorphic?



Yes!



But is it a secure form of encryption?



Security of the FHE Scheme

I For an attacker to obtain the secret key, they need to solve
two hard problems:

I 1. Shortest Independent Vector Problem (Bsk
J from Bpk

J )
I 2. Sparse Subset Sum Problem (subset of Ai ’s from Bsk

J .)
I Note: Solving 1 is enough to decrypt a ciphertext
I Best algorithms for each take exponential time in the

worst-case, no efficient quantum algorithms are known.



Developments since 2009

I FHE is too resource-intensive for practical usage right now.
I Gentry et al. demonstrated a version of FHE which does

not require bootstrapping [3], but the performance benefits
if it uses bootstrapping on deep circuits.

I Gentry et al. also demonstrated a FHE scheme over the
integers. [11].

I Even though circuit evaluation is very slow, evaluation is
massively-parallel! [1].



Concluding Remarks



Questions?
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