
Exploring Fully Homomorphic Encryption

Alex Grabanski
ajg137@case.edu

5/1/2017

1 Abstract

In 2009, Craig Gentry solved a long-standing problem in Cryptology [11] by
presenting the first Fully-Homomorphic Encryption (FHE) scheme [5]. FHE al-
lows a certain class of computations represented by polynomial ”circuits” to
be performed on ciphertexts in such a way that the decrypted ciphertexts in-
herit the transformation, yet the security of the plaintext is not compromised
by the process. While homomorphic encryption schemes existed prior to Gen-
try’s 2009 thesis, all such attempts only were able to represent homomorphisms
of groups and other, similarly limited algebraic structures. While only a single
operation is needed for e.g. tallying electronic votes, the prior state of the art
was a far cry from securely performing arbitrary computations. Gentry’s inno-
vation opened wide a realm of new theoretical possibilities for cryptographers,
allowing near-arbitrary data processing without compromising data security.
While Gentry’s scheme (and ensuing variants) is not yet efficient enough to
do so, FHE could revolutionize cloud computing, allowing users to securely
outsource their data for processing on a remote server. Given the shift toward
monolithic web applications and services provided by private companies, FHE
may become an excellent way to protect the privacy rights of consumers in
practice.

2 Context: Computational Classes

Before launching into an overview of the scheme, it will be useful to under-
stand why Fully-Homomorphic Encryption is the closest we could get to ar-
bitrary computations without violating data security. The history of computer
science as a formal discipline arguably began with Gödel, Church and Tur-
ing’s attempts to define computation [14] in the 1930’s. To do so, they worked
from the notion of effective procedures or algorithms, which are step-by-step me-
chanical procedures to accomplish a given goal, and gave the notion a formal
grounding in several different systems. Gradually, they established that all the

1

systems they considered (Lambda Calculus, Turing Machines, General Recur-
sive Functions for contributions by Church, Turing, and Gödel, respectively)
were equivalent by constructing interpreters for each inside the other. The (at
the time) surprising equivalence of the computational power of these differ-
ent formal systems lead to the formulation of the Church-Turing Thesis, which
states, roughly, that everything that may be effectively calculated is expressible
by a Turing Machine.

Unfortunately, and as Gentry points out, we cannot hope to securely simu-
late the execution of a Turing Machine on encrypted data. The fatal flaw comes
from the ability of Turing Machines to represent arbitrary looping programs,
which is precisely what gives them their computational power. Given some
algorithm A which computes a function f(n) on some data n and a scheme for
securely executing this on a remote machine, an attacker could measure the
time t(n) it takes for the remote machine to respond to the request to compute
f(n) as part of a side-channel attack. From t(n) and A, we may indirectly gain
information about n. While we could adapt such a cryptosystem to e.g. add a
random factor to t(n), over time, information would still leak. The only way we
could hope to not leak information from such a system would be if we could
provide an upper bound on t(n) for all expected inputs, but this is reducible to
the Halting Problem, which is undecidable.

Consequently, we must restrict our attention to computations with t(n) ≤ T
for some T independent of n which may be easily determined a priori. Fur-
thermore, we must restrict our computations to be on inputs and outputs of
a bounded bit-width for the same concern of side-channel attacks. It turns
out that computations of this form may, in general, be expressed by binary
combinational circuits. A combinational circuit is a composite structure built
from boolean logic gates where the output from the circuit depends only on
its present inputs. We are unable to express sequential circuits, which may have
time-and-state-varying outputs, which are necessary components in the con-
struction of real-world computers. However, restricting our attention to this
class makes our task much more focused; all we need to do is to allow one
universal logic gate, like NAND or NOR, to be expressible in a reliable and
repeatable manner.

The need to express such boolean logic gates relates to rings and ring homo-
morphisms in a straightforward manner. Consider the ring Z2, which has two
elements: ”0” (the additive identity, which we suggestively name ”FALSE”),
and ”1” (the multiplicative identity, sometimes called ”TRUE”.) Then, for any
a, b ∈ Z2, note that the table of outputs for a + b matches the truth table for a
XOR b, and the table of outputs for a × b matches the truth table for a AND b,
under our suggestive naming scheme. Since ”TRUE XOR a” is equivalent to
”NOT a”, we can form NAND gates. Consequently, boolean logic circuits with
a single-bit output may be represented by multivariate polynomials in Z2 by
assigning a variable to each input bit. The goal of FHE, then, is to be able to
securely apply the polynomial evaluation homomorphisms

Ea1,a2,...an : R[x1, ...xn]→ R by E(f(x1, ...xn)) = f(a1, ...an)

2

for a1, ...an ∈ R

for a ring R with a homomorphism φ to Z2, while making it difficult to explic-
itly compute φ without the private key.

In theory, we could reduce all such circuits to their standard sum-of-products
representation, but in practice, this may cause the size of the polynomial rep-
resentation of the circuit to expand exponentially compared to a more com-
pact, factored representation. Define the depth of a circuit to be the maximum
number of nested operations in the circuit. A somewhat homomorphic encryp-
tion scheme is then defined to be a restricted version of a fully-homomorphic
scheme which only works on circuits up to a given depth limit. The origin
of such a notion will be explained later, when we describe the gory details of
their implementation based on ideal lattices. Despite their limited capabilities,
somewhat homomorphic schemes may find uses on their own, and will prove
to be integral to the construction of Gentry’s FHE.

3 History of the Problem

The original challenge to construct a fully-homomorphic encryption scheme
was posed by Rivest et. al in 1978, the same year as Rivest et. al’s introduction
of the RSA public-key cryptosystem [12]. In ”On Data Banks and Privacy Ho-
momorphisms”, Rivest et. al. demonstrate that the RSA cryptosystem has the
property that the encryption of the product of plaintexts is the product of the
encryptions of plaintexts, making the encryption function into a group homo-
morphism. In the same paper, they demonstrate other basic examples of en-
cryption schemes able to perform limited sets of operations homomorphically
on encrypted data. However, they note that ”comparison operations are not
possible” under any of the schemes they proposed, and so they posed the ques-
tion of ”whether it is possible to have a privacy homomorphism with a large
set of operations which is highly secure.” As an example of the hypothetical
usefulness of such a ”privacy homomorphism,” they consider the example of
a loan servicer running computerized operations securely on a (then-common)
time-sharing system.

Over time, the motivation among researchers to find more such ”privacy
homomorphisms” only increased, and cryptosystems began to be constructed
explicitly for the purpose of the performance of homomorphic operations. One
such example (which Gentry points to) is the Boneh-Goh-Nassim (BGN) cryp-
tosystem, which is capable of evaluating arbitrary quadratic forms homomor-
phically [2]. A major motivating factor for constructing such cryptosystems
was provided by the tantalizing possibility of cryptographic voting schemes,
which was responsible in part for the creation of the Paillier and Benaloh cryp-
tosystems [10]. Over time, as homomorphic encryption schemes grew more
elaborate, researchers slowly expanded the set of functions that could be se-
curely evaluated, but there seemed to be little hope for an asymptotically effi-
cient scheme which could evaluate arbitrary polynomials.

3

In 2009, Craig Gentry, advised by Boneh for his doctoral dissertation, found
the holy grail of research into the theory of homomorphic cryptosystems by
providing an explicit construction of a fully-homomorphic encryption scheme.
Here, the story begins.

4 The Cryptosystem, Abstractly

At a very high level, Gentry defines the following operations that any fully or
somewhat-homomorphic encryption scheme ε must implement (p23):

KeyGenε : {0, 1}
∗ × N→ K×K

Encryptε : K × P → C

Decryptε : K × C → P

Evaluateε : K × Cε × Cn → C

where K is the key space, P is the message space, C is the cipher space, and Cε
is the space of all circuits supported by the scheme ε.

The first three operations are nothing new for anyone familiar with public-
key cryptography. KeyGenε takes a random string of bits and the value of the
security parameter λ and returns a (secret key,public key) pair, (sk, pk) for short.
Encryptε encrypts messages with the public key to be decrypted by Decryptε
using the secret key.

The new element is the Evaluateε operation, which must satisfy the follow-
ing correctness property:

∀R ∈ {0, 1}∗, λ ∈ N, if (pk, sk) = KeyGenε(R, λ),

then ∀C ∈ Cε, π1, ...πn ∈ P with ψi = Encryptε(pk, πi),

Decryptε(sk,Evaluateε(pk, C, (ψ1, ...ψn))) = C(π1, ...πn)

However, as Gentry points out (p5), we need to rule out trivial definitions of
Evaluateε which do nothing but pass C along, relying on an expressive cipher
space and on Decryptε to perform the computation of C(π1, ...πn). To do so,
he makes the insight that if Decryptε itself is representable by a circuit Dε ∈ Cε
of size polynomial in λ, it is unable to evaluate the larger circuits in Cε. Gen-
try calls this last property compactness, and then defines a fully-homomorphic
encryption scheme as something following the above format which is compact
and correctly evaluates all possible circuits.

The insight to encode the decryption algorithm as a circuit Dε is what pro-
vided Gentry with a natural path to construct a FHE scheme. Suppose that
we have a somewhat-homomorphic scheme ε(d) which is able to evaluate all
circuits with depth at most d, starting from freshly-encrypted ciphertexts. In-
tuitively, the somewhat-homomorphic scheme causes ciphertexts to ”decay”
over a sequence of operations, until decryption would eventually violate cor-
rectness. To get around this, if we could find a way to securely re-encrypt the

4

result of the computation so as to appear like a freshly-encrypted ciphertext,
FHE would be achievable by breaking up any circuit into components of depth
at most d, re-encrypting intermediate values as needed.

Given Dε, Gentry does exactly that (p44) with the new operation Recryptε :
K × Cε × C × C → C, defined as:

Recryptε(pk,Dε, esk, ψ) = Evaluateε(pk,Dε, (esk,Encryptε(pk, ψ)))

where pk and Dε are as above, ψ is the ciphertext to re-encrypt, and esk is the
encryption of the secret key sk under the public key pk. Note that to re-encrypt
a ciphertext, we don’t need sk, but we need esk, which could present a vulner-
ability. In particular, the encryption of the secret key could reveal information
about the secret key, making the system easier to attack. Gentry manages to
show that under certain conditions, the scheme is secure nevertheless (p53.)

Recryptε works exactly because with esk, we can decrypt a ciphertext with-
out ever leaving cipher space using a single evaluation of the decryption cir-
cuit. Initially, ψ is encrypted, resulting in a message that has been encrypted
twice. When we evaluate the decryption circuit, the inner encryption (the one
which may have accumulated errors) is lifted. However, note that in the pro-
cess, we have introduced a source of error into the new ciphertext by evalu-
ating the decryption circuit. For Recryptε to be practical, we need to ensure
that the depth of the decryption circuit is small enough that we can meaning-
fully reduce the error in the input ciphertext, otherwise we may need to apply
Recryptε on each ciphertext more than once to be able to perform more opera-
tions.

5 Applications

Given the above blueprint for a fully-homomorphic cryptosystem, Gentry points
out a number of hypothetical use-cases for the system. Aside from the more ob-
vious applications to privacy in cloud computing, Gentry points out (p25) that
the definition of Recryptε allows for straightforward proxy re-encryption. Proxy
re-encryption allows a ciphertext to be re-encrypted under a new public key by
a third party without needing to know the original private key. By modifying
the definition of Recryptε to read Evaluateε(pk2,Dε, (esk1,Encryptε(pk1, ψ))),
messages encrypted under pk1 may be re-encrypted under pk2 using esk as a
tag. Proxy re-encryption lets one party in a computation delegate decryption
of a message to a third party without decrypting the message or sharing their
secret key, which can be useful in multi-party environments.

Gentry also provides examples of how the cryptosystem could be useful in
constructing non-interactive zero-knowledge proofs, software protection schemes,
and secure multi-party computation schemes. The potential utility of a FHE
scheme in these endeavors was realized long before Gentry’s result, but now
researchers are able to evaluate the practical aspects of using such a scheme as
a building-block in other cryptosystems. By far, the most-hyped application of

5

FHE is the new ability for remote servers to process sensitive user data without
ever knowing anything about the users. Gentry provided an example (p21) of a
search engine whose queries are never revealed to the remote server, but many
other researchers have provided a great variety of other examples. For exam-
ple, FHE has been applied to biological research by enabling string searches
through gene sequences without compromising the privacy of individuals in
a database [7]. More generally, FHE can support statistical analysis of a large
body of participant-based data without revealing the identities of the partici-
pants [8]. Outside of medicine and data analysis, FHE has also been proposed
as a way to allow true, secure blind auctions over the internet [6].

Given certain political developments in the United States over the past ten
years, such as the revelations about the NSA’s warrantless metadata collec-
tion, or more recently, such as the repeal of FCC internet privacy rules un-
der the Trump administration, the data privacy rights of average Americans
are being threatened. For both of those examples, the threat to consumer pri-
vacy originates from the reliance on a trusted third party, namely, telecommu-
nications companies. Unfortunately, fully-homomorphic encryption does not
protect against this threat any more than traditional cryptosystems. However,
given the reliance of consumers on private companies such as Google, Yahoo,
or Facebook to provide web-based applications, FHE schemes could provide
an additional layer of security against data breaches of private servers.

6 Ideal Lattices

The abstract scheme given previously, while a good overview of the approach,
does not describe how we can securely perform primitive operations in the
first place. Moreover, the scheme above fails to describe why we might en-
counter ”errors” in the ciphertexts after performing a sequence of operations,
creating a need for re-encryption. It turns out that these ”errors” have a very
nice geometric interpretation in the original, lattice-based version of Gentry’s
scheme.

First, a lattice L is a subgroup of Rn isomorphic to Zn such that span(L) =
Rn [13]. Visually, the lattice L is, as a set, the collection of corners of a tiling
of Rn by parallelpipeds. While this definition may give the impression that
lattices are too simple a primitive to build cryptosystems on, hard problems on
lattices are not hard to find. Define a basis B for the lattice L as an ordered col-
lection of n linearly-independent vectors which span L for linear combinations
with coefficients in Z. Given a lattice basis B, denote the lattice generated by
B as L(B). Then, given a norm ||.|| on Rn and a lattice basis B, the Shortest
Vector Problem is to find a vector v in L(B) which minimizes ||v||. A more gen-
eral version of the Shortest Vector Problem is the Closest Vector Problem, which
modifies the Shortest Vector Problem to measure distances from some arbitrary,
fixed basepoint b ∈ Rn instead of the origin.

While simple-seeming, the Closest Vector Problem with the Euclidean norm
is NP-Complete. A straightforward proof of this fact as described in [9] is by an

6

easy reduction of the subset sum problem, a specialized version of the knap-
sack problem, to CVP. The security of Gentry’s cryptosystem’s ultimately re-
lies on the hardness of a variant of SVP called the Shortest Independent Vector
Problem, which is to find a linearly-independent set of n ”short” vectors in L.
Intuitively, solving the SIVP yields a near-standardized basis for the lattice L
which illuminates the geometry ofL by allowing us to recover the fundamental
parallelpiped in the tiling we described earlier.

However, lattices have no notion of a ring structure. For that, Gentry turns
to ideal lattices, which may be described as follows: Consider the ring R =
Z[x]/f(x) where deg(f) = n, and suppose that we have an ideal I in R. Then
R/I is a ring with a particularly nice representation: As a group, (R,+) ∼=
Zn, by considering the coordinates as coefficients in (congruence classes of)
polynomials of degree strictly less than n. Then, since (I,+) is a subgroup of
(R,+), under the isomorphism, I provides a sub-lattice of Zn, thought of as
sitting inside Rn.

Since any ideal I may be identified with a lattice L(I), we can consider
lattice bases BI corresponding to ideals in R, whence we can perform com-
putations on representatives of R/I in a very straightforward manner. For a
vector v ∈ Zn corresponding to an element r ∈ R, let vmodBI be defined as
a vector in {v +

∑
i ai
~bi | ∀i ai ∈ Z ∧ ~bi ∈ BI} ∩ B, where B is a copy of the

parallelpiped generated by the vectors in BI translated to have its center at the
origin. Then, ignoring the boundary of B, vmodBI uniquely represents the
congruence class of r inR/I , and it may be easily computed as v−BI ∗ [B−1I v],
where BI denotes the matrix whose columns are vectors in BI , and [.] denotes
”round the vector’s components to the nearest integer.”

Then, note that addition in R/I corresponds to vector addition in Zn mod-
ulo BI , and multiplication in R/I corresponds to a rather strange R-bilinear
operator × : Zn × Zn → Zn in the R-module Zn, only taken modulo BI . As a
consequence of the metric structure of Rn, it’s natural to consider the effect of
these operators on (Euclidean) vector norms before taking their results modulo
BI . By the triangle inequality, for any vectors a, b ∈ Zn, ||a+b|| ≤ ||a||+||b||, and
as a consequence of the bilinearity of ×, ||a× b|| ≤ γ||a||||b|| for some constant
γ dependent on R. These bounds will be closely related to the accumulated
evaluation ”error” in Gentry’s somewhat-homomorphic scheme, and with this
rich geometric structure on the ring operations in R/I , we are now prepared
to describe the scheme.

7 A Somewhat-Homomorphic Cryptosystem

Suppose we have R = Z[x]/f(x) with deg(f) = n as before, and let I and J
be two relatively-prime ideals of R (I + J = R). Then, the public key pk is
(BI , B

pk
J , D) for lattice bases of L(I), L(J), respectively and D a probability

distribution over I . The secret key sk is another basis BskJ for L(J). Intuitively,
KeyGenε will try to pick a ”good” basis for J for the secret key to make de-
cryption easy, but a ”bad” basis for J as part of the public key.

7

To encrypt π ∈ P , we compute ψ = Encryptε(pk, π) = (π + i) modBpkJ
where i ∈ I is randomly sampled from D. Then, note that ψ = π + i + j for
some j ∈ J .

To decrypt ψ ∈ C, we compute π = Decryptε(sk, ψ) = (ψmodBskJ)modBI .
For this to work, we need ψmodBskJ = (π+ i), which imposes a constraint on
BskJ . In particular, we need P +D ⊆ B for B the origin-centered parallelpiped
generated by BskJ .

To evaluate a circuitC ∈ Cε on ciphertexts ψk = πk+ik+jk, simply compute
C(ψ1, ...ψm) ∈ C(π1+i1, ...πm+im)+J . In particular, C(ψ1, ...ψm) ∈ (π+i)+J
for some π and some i.

Let rDEC be the inball of the parallelpiped B. Viewing (π + i) as an offset
from the lattice generated by J, note that so long as ||H(π1+i1, π2+i2)|| ≤ rDEC ,
we may perform the operatorH on ψ1 and ψ2 without worrying about winding
up in the wrong congruence class modulo I due to our ” modBskJ ” operation
in decryption.

Given our earlier bounds on vector norms after performing + and ×, we
can see that if both operands have offsets of magnitude ≤ r, then the mag-
nitude of the result of addition will be ≤ 2r, and the magnitude of the result
of multiplication will be ≤ γr2. Consequently, the growth in offsets under
repeated squaring dominates the growth in offsets under repeated doubling,
with the magnitude of the offset of a value squared k times being bounded
above by γ(2

k−1) ∗ r(2k). As a result, we can only safely evaluate circuits whose
depth k is such that γ(2

k−1) ∗ r(2k) ≤ rDEC on inputs with offsets of magni-
tude smaller than r. Since the offsets exhibit doubly-exponential growth, k
may be bounded by a factor growing as log(log(rDEC)), or more precisely as
log(log(rDEC))− log(log(γ ∗ r)) (Gentry 1.4.1).

The doubly-logarithmic bound on the depth of circuits makes the task of
constructing a decryption circuit difficult. Gentry notes (p97) that the most
straightforward construction of the decryption circuit requires a slightly higher
asymptotic circuit depth bound to succeed. To get around this, Gentry uses
several tricks to make the job of the decryption circuit easier. For now, note
that while the scheme above is not fully-homomorphic, it is just as useful as
FHE for special situations where the circuits we want to evaluate fall within
the depth bound. As a toy example, using the above bound and ignoring
the ”−log(log(γ ∗ r))” term for now, we can evaluate a single multiplication
if 4 ≤ rDEC . We can evaluate arbitrary quadratic forms on n variables if we
can evaluate sums of products with n2

2 summands, and since the error induced
by addition is additive in the scheme, we can do so if 2n2 ≤ rDEC . Due to the
term we ignored, rDEC will need to be slightly higher and will depend on the
size bounds on the inputs.

8

8 Security

The security of the partially-homomorphic scheme reduces to the question
of finding bases BJ from BpkJ for the lattice L(J) such that the parallelpiped
spanned by BJ contains P + D. We could do this easily if we had access to a
Shortest Independent Vector Problem oracle, because we could use its output
on BpkJ to determine the fundamental parallelpiped for the lattice J and then
scale it appropriately to contain P + D. Using a chosen-ciphertext attack, we
could then send ciphertexts to the system for processing and eventually tweak
BJ using our shortest independent vectors to match the statistical profile of
operations performed with respect to the secret key BskJ .

While the above observation shows that access to a SIVP oracle is sufficient,
in principle, to launch an attack on the cryptosystem, it takes a lot more work
to provide evidence that it is necessary. Chapter 19 of Gentry’s thesis shows
exactly that, given his definition of the KeyGenε algorithm.

However, even if the KeyGenε algorithm ensures security against bad choices
of J , Gentry points out that it is possible that the choice of the ring R =
Z[x]/f(x) could expose a weakness if f(x) isn’t chosen judiciously. For ex-
ample, f(x) = xn − 1, which yields the class of circulant ideal lattices, greatly
simplifies many operations and the resulting decryption circuit. In addition,
circulant lattices maximize the depth of evaluable circuits for a given lattice
dimension n by setting γ =

√
n. However, Gentry and Szydlo demonstrated

an attack on the system under this choice which is effective if n is composite or
if the ideal I has an orthonormal basis. Gentry notes (p68) that while circulant
lattices can be weaker than other choices, the same weaknesses also plague the
widely-available cryptosystem NTRU, and that the performance gains from
using such lattices may outweigh the potential cost to security. In light of the
unresolved questions about the hardness of the SIVP of some particular ideal
lattices, Gentry devotes the penultimate chapter of his thesis (19) to a modi-
fied version of the scheme which reduces to the worst-case hardness of SIVP
for ideal lattices. With this modification, effective attacks on the system would
need to leverage properties common to all ideal lattices. The question of the
existence/non-existence of effective attacks on this modified scheme is open.

9 Toward Fully-Homomorphic Encryption

In order to make the partially-homomorphic scheme into a fully-homomorphic
scheme, Gentry came up with several tricks and modifications to construct a
partially-homomorphic scheme capable of evaluating its own decryption cir-
cuit. First, recall that Decryptε(sk, ψ) = (ψmodBskJ)modBI . Together with
the definition of mod, the right-hand side may be written as (ψ−Bsk1J [Bsk2J ψ])modBI
where Bsk1J = BskJ and Bsk2J = (BskJ)−1, strictly following the definitions
above. Note that in the above expression, the decryption circuit does not need
to compute the inverse of any matrix, so long as the encryption of the secret
key included in the ciphertext includes both Bsk1J and Bsk2J . Consequently,

9

the dominant contributions to the depth of the decryption circuit come from
the implementations of the inner matrix-vector multiplication and the vector
rounding operator [.]. One particularly hairy detail is that the result of Bsk2J ψ
need not live in Zn, so the decryption circuit will need to internally emulate
fixed-point binary arithmetic.

Gentry tackles some of this complexity (8.4) by imposing what seems, at
first, to be an odd restriction. The depth limit for circuits was log(log(rDEC))−
log(log(γ∗r)), but Gentry restricts the set of allowable circuits to those of depth
within log(log(rDEC/2)) − log(log(γ ∗ r)). Seemingly, the problem has gotten
worse, since the goal is to be able to evaluate deep circuits. However, note that
the depth lost by this change decreases as rDEC increases and is less than 1
if rDEC > 4, which was the conservative lower bound to be able to perform
multiplications. If we somehow use the restriction on allowed circuits to de-
crease the depth of the decryption circuit by at least two levels, this change
will yield a net improvement. Gentry proves in a lemma (8.4.2) that making
the change results in Bsk2J ψ always having coordinate values within 1

4 of an
integer. With this property, Gentry condenses the first matrix-vector multipli-
cation and the rounding step into a single step, which allows room to ignore
small contributions to the matrix-vector product under certain conditions. By
truncating intermediate results in the calculation, operations such as addition
and multiplication require less depth, since fewer carries need to be performed
in sums.

Unfortunately, even after restricting the allowable circuits and taking ad-
vantage of rounding, the decryption circuit is still too deep to be evaluated.
Without doing something crazy, like offloading work on decrypting cipher-
texts to the encrypter, it would seem that the story ends here, and that fully-
homomorphic encryption is not possible under this approach. On the other
hand, imagine that we are crazy. If we could cut out the inner matrix multi-
plication step in binary fixed-point arithmetic by using hints provided by the
encrypter, the complexity of the decryption circuit would decrease radically.
Gentry does exactly this (10.2), and calls the technique ”squashing the decryp-
tion circuit.” Instead of carrying around Bsk2J in the encrypted private key, the
entity performing the initial encryption of the plaintext finds a set of matrices
A = {A1, ...An} and a subset S of them which sums toBsk2J . The set {A1, ...An}
is then included in the public key, and a binary string representing membership
of elements of S in A replaces Bsk2J in the secret key and its encryption. Then,
whenever the decryption circuit needs to be evaluated on the ciphertext ψ, the
evaluator computes every A1ψ, ...Anψ in public and feeds the results to the
decryption circuit. Since ψ contains a representation of S, all the decryption
circuit needs to do to compute Bsk2J ψ is to evaluate the sum

∑
Ai∈S Aiψ.

With this modification and the simplifications due to rounding, the result-
ing decryption circuit fits within the depth limit. Consequently, this modified
scheme is fully-homomorphic, but a more careful analysis is required to show
that it is still an effective encryption scheme. In particular, we need to ensure
that knowledge of A1ψ, ...Anψ for every ciphertext ψ we homomorphically de-
crypt does not give information about S without significant effort. Since the

10

linearity of matrix-vector multiplication can be exploited, this reduces to deter-
mining S given {A1, ...An} and the encryption of the secret key. Gentry defines
(p19) a computational problem called the Sparse Vector Subset Sum Problem
(SVSSP) and reduces it to the previous problem. SVSSP is just like the sub-
set sum problem used in knapsack cryptosystems over vectors, but with the
knowledge that the size of S is small compared to n. The best-known attack
on the scalar version, the sparse subset sum problem, is exponential in the size
of the subset. As a result, the work performed in public does not compromise
the security of the cryptosystem assuming that security parameters are chosen
with care.

10 Modifications

While the above scheme is a monumental theoretical achievement, the com-
putation time required to perform operations in the scheme is fairly high. In
particular, if λ is the security parameter of the scheme, where the best-known
attacks on the embedded SIVP and SVSSP problems asymptotically dominate
2λ in runtime, each computation will require a secret key of size O(λ7) and
computation quasi-linear in λ9 (p117.) Theoretically, this runtime is nice, since
it is polynomial in the security parameter, but the degree of the polynomial is
too high for practical usage.

Since Gentry’s PhD thesis, a number of iterative improvements have been
made upon Gentry’s fully-homomorphic system, and fully-homomorphic sys-
tems have been constructed outside the context of lattice cryptography which
utilize the same basic principles. To deliver a more succinct exposition than his
nearly 200-page thesis, Gentry also presented a version of his fully-homomorphic
scheme over the integers [15], which uses ideals in Z and replaces the n-dimensional
geometric realization of lattices with simple integer addition and multiplica-
tion, where bounds are derived using the absolute value function instead of the
Euclidean norm. Unfortunately, the security of this conceptually-simpler sys-
tem reduces to the Approximate-GCD problem, which may be easier to solve
than SVSSP and SIVP. In fact, Chen et. al demonstrated attacks on this version
of the cryptosystem which can break the encryption under an 89MB public key
in 190 days on a single-core desktop computer with 72GB of RAM [4]. For
this reason, most fully-homomorphic cryptosystems utilize lattice-based cryp-
tography, and generally follow Gentry’s blueprint, but with optimizations to
support massively-parallel processing or to cut down on the asymptotic run-
time of computations in the security parameter [1].

Since few researchers deviate from Gentry’s blueprint, it is tempting to
say that the abstract format of the scheme, involving bootstrapping, is un-
likely to change. However, Gentry et. al. demonstrated in 2014 that with a
technique called ”modulus switching,” a FHE scheme could be constructed
without needing to evaluate the decryption circuit [3]. Unfortunately, the per-
operation runtime of this modified scheme is cubic in the depth of evaluated
circuits, and so it is impractical for homomorphically evaluating high-degree

11

polynomials. Luckily, bootstrapping may be introduced into the scheme as ”an
optimization” to deal with deep circuits to achieve an overall per-operation
runtime linear in the number of gates and in the security parameter.

11 Conclusion

Given the developments above, the future of fully-homomorphic encryption
looks bright. While existing implementations are impractical, there is hope that
some day, we may be able to securely operate on encrypted data as if it were
plain-old-data with a minimal performance penalty. If that ever happens, we
could expect to see a renaissance in the enforcement of privacy rights of con-
sumers in the face of monolithic and opaque third parties. More than an impor-
tant theoretical development, Gentry’s revolution may eventually cascade into
a radical re-thinking of the security of cloud computing and web applications
and allow commerce without possibility of clandestine surveillance.

References

[1] Nathanael Black. Homomorphic encryption and the approximate gcd
problem. 2014.

[2] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-dnf formulas on
ciphertexts. In Theory of Cryptography Conference, pages 325–341. Springer,
2005.

[3] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully
homomorphic encryption without bootstrapping. ACM Transactions on
Computation Theory (TOCT), 6(3):13, 2014.

[4] Yuanmi Chen and Phong Q Nguyen. Faster algorithms for approximate
common divisors: Breaking fully-homomorphic-encryption challenges
over the integers. In Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques, pages 502–519. Springer, 2012.

[5] Craig Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford
University, 2009. crypto.stanford.edu/craig.

[6] Jong-Hyuk Im, Taek-Young Youn, and Mun-Kyu Lee. Privacy-preserving
blind auction protocol using fully homomorphic encryption. Advanced
Science Letters, 22(9):2598–2600, 2016.

[7] Yu Ishimaki, Kana Shimizu, Koji Nuida, and Hayato Yamana. Poster:
Privacy-preserving string search for genome sequences using fully homo-
morphic encryption. Bioinformatics, 2016.

12

crypto.stanford.edu/craig

[8] Wen-jie Lu, Shohei Kawasaki, and Jun Sakuma. Using fully homomor-
phic encryption for statistical analysis of categorical, ordinal and numeri-
cal data. 2017.

[9] Daniele Micciancio. The hardness of the closest vector problem with pre-
processing. IEEE Transactions on Information Theory, 47(3):1212–1215, 2001.

[10] Pascal Paillier. Public-key cryptosystems based on composite degree
residuosity classes. In International Conference on the Theory and Applica-
tions of Cryptographic Techniques, pages 223–238. Springer, 1999.

[11] Ronald L Rivest, Len Adleman, and Michael L Dertouzos. On data banks
and privacy homomorphisms. 1978.

[12] Ronald L Rivest, Len Adleman, and Michael L Dertouzos. On data banks
and privacy homomorphisms. 1978.

[13] Joseph H Silverman. An introduction to the theory of lattices and appli-
cations to cryptography. 2006.

[14] Robert I Soare. Turing oracle machines, online computing, and three
displacements in computability theory. Annals of Pure and Applied Logic,
160(3):368–399, 2009.

[15] Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan.
Fully homomorphic encryption over the integers. Cryptology ePrint
Archive, Report 2009/616, 2009. http://eprint.iacr.org/2009/
616.

13

http://eprint.iacr.org/2009/616
http://eprint.iacr.org/2009/616

	Abstract
	Context: Computational Classes
	History of the Problem
	The Cryptosystem, Abstractly
	Applications
	Ideal Lattices
	A Somewhat-Homomorphic Cryptosystem
	Security
	Toward Fully-Homomorphic Encryption
	Modifications
	Conclusion

