
The Cutest and Fuzziest Computer Program
Or: How I Learned to Stop Worrying and Love Lambda

Calculus

Alex Grabanski

2/24/2017

Define Fuzzy? Define Cute?

For our purposes:
I A program is ”cute” if it’s

short.
I A program is ”fuzzy” if

running it actually runs
several programs
non-deterministically.

A God Complex
Imagine that you’re God*

I Suppose that you’re lazy.

I Really lazy.
I But you need to invent the universe.
I You’re a programmer, so might as well write a computer

program.
I Due to feature bloat, may as well invent a multiverse.
I How would you do it?
I One solution: In an elegant programming language, write

something that interprets commands for a very minimal
language.

I Then, generate every possible program for the minimal
language.

I Run them all simultaneously!

0existence, uniqueness proofs/disproofs left as exercises to interested
audience members

A God Complex
Imagine that you’re God*

I Suppose that you’re lazy.
I Really lazy.

I But you need to invent the universe.
I You’re a programmer, so might as well write a computer

program.
I Due to feature bloat, may as well invent a multiverse.
I How would you do it?
I One solution: In an elegant programming language, write

something that interprets commands for a very minimal
language.

I Then, generate every possible program for the minimal
language.

I Run them all simultaneously!

0existence, uniqueness proofs/disproofs left as exercises to interested
audience members

A God Complex
Imagine that you’re God*

I Suppose that you’re lazy.
I Really lazy.
I But you need to invent the universe.

I You’re a programmer, so might as well write a computer
program.

I Due to feature bloat, may as well invent a multiverse.
I How would you do it?
I One solution: In an elegant programming language, write

something that interprets commands for a very minimal
language.

I Then, generate every possible program for the minimal
language.

I Run them all simultaneously!

0existence, uniqueness proofs/disproofs left as exercises to interested
audience members

A God Complex
Imagine that you’re God*

I Suppose that you’re lazy.
I Really lazy.
I But you need to invent the universe.
I You’re a programmer, so might as well write a computer

program.

I Due to feature bloat, may as well invent a multiverse.
I How would you do it?
I One solution: In an elegant programming language, write

something that interprets commands for a very minimal
language.

I Then, generate every possible program for the minimal
language.

I Run them all simultaneously!

0existence, uniqueness proofs/disproofs left as exercises to interested
audience members

A God Complex
Imagine that you’re God*

I Suppose that you’re lazy.
I Really lazy.
I But you need to invent the universe.
I You’re a programmer, so might as well write a computer

program.
I Due to feature bloat, may as well invent a multiverse.

I How would you do it?
I One solution: In an elegant programming language, write

something that interprets commands for a very minimal
language.

I Then, generate every possible program for the minimal
language.

I Run them all simultaneously!

0existence, uniqueness proofs/disproofs left as exercises to interested
audience members

A God Complex
Imagine that you’re God*

I Suppose that you’re lazy.
I Really lazy.
I But you need to invent the universe.
I You’re a programmer, so might as well write a computer

program.
I Due to feature bloat, may as well invent a multiverse.
I How would you do it?

I One solution: In an elegant programming language, write
something that interprets commands for a very minimal
language.

I Then, generate every possible program for the minimal
language.

I Run them all simultaneously!

0existence, uniqueness proofs/disproofs left as exercises to interested
audience members

A God Complex
Imagine that you’re God*

I Suppose that you’re lazy.
I Really lazy.
I But you need to invent the universe.
I You’re a programmer, so might as well write a computer

program.
I Due to feature bloat, may as well invent a multiverse.
I How would you do it?
I One solution: In an elegant programming language, write

something that interprets commands for a very minimal
language.

I Then, generate every possible program for the minimal
language.

I Run them all simultaneously!

0existence, uniqueness proofs/disproofs left as exercises to interested
audience members

A God Complex
Imagine that you’re God*

I Suppose that you’re lazy.
I Really lazy.
I But you need to invent the universe.
I You’re a programmer, so might as well write a computer

program.
I Due to feature bloat, may as well invent a multiverse.
I How would you do it?
I One solution: In an elegant programming language, write

something that interprets commands for a very minimal
language.

I Then, generate every possible program for the minimal
language.

I Run them all simultaneously!

0existence, uniqueness proofs/disproofs left as exercises to interested
audience members

A God Complex
Imagine that you’re God*

I Suppose that you’re lazy.
I Really lazy.
I But you need to invent the universe.
I You’re a programmer, so might as well write a computer

program.
I Due to feature bloat, may as well invent a multiverse.
I How would you do it?
I One solution: In an elegant programming language, write

something that interprets commands for a very minimal
language.

I Then, generate every possible program for the minimal
language.

I Run them all simultaneously!
0existence, uniqueness proofs/disproofs left as exercises to interested

audience members

A Very Elegant Language: Lambda Calculus

I Language based on reduction of terms to other terms.

Terms:
I Any parameter name (x/y/z/foo/bar) is a term
I For any collection of terms f , t1, t2, ..., (f t1 t2...) is a term,

thought of as the application of the function f to the other
terms.

I For any term t and parameter name x , λx .t is a term.
Within t , x is said to be bound

Reduction:
I (λx .t) y → sub(t , x , y) where sub(t , x , y) means

”substitute all free occurrences of x with y in term t”
I A variable appears free in a term if it is not bound.

Elegant and Natural Code Samples: Definitions

I To get ourselves off the ground, we first define natural
numbers.

I We do so using so-called Church encoding.
I The idea: A natural number n may be identified and

defined by its action on functions via the nth iterate.
I Some numbers:

ZERO := λ f .λx . x
ONE := λ f .λx . f x
TWO := λ f .λx . f (f x)
THREE := λ f .λx . f (f (f x))
FOUR := λ f .λx . f (f (f (f x)))

Elegant and Natural Growing Code Samples

SUCC := λnum.λ f .λx . f (num f x)
ADD := λnum1 .λnum2 . λ f .λx . num1 f (num2 f x)
MUL := λnum1 .λnum2 . λ f .λx . num1 (num2 f) x

Elegant and Truthy Code Samples: Definitions

I Now, for Church-encoded Booleans (true/false values)
I Define true/false values by how they ”if/then/else” things.
I Some booleans:

TRUE := λac t ion1 .λac t ion2 . ac t ion1
FALSE := λac t ion1 .λac t ion2 . ac t ion2

Elegant and Truthy Code Samples: Logic

IF := λp .λac t ion1 .λac t ion2 . p ac t ion1 ac t ion2
NOT := λp . IF p FALSE TRUE
AND := λp1 .λp2 . IF p1 p2 FALSE
ZERO? := λnum. num (λx . FALSE) TRUE

Note the use of the property that the zeroth iterate of a function
is the identity!

Elegant and Romantic Code Samples

I We Church-encode Pairs of terms by how we index the two
elements

I We index the two elements with TRUE/FALSE!

PAIR := λe1 .λe2 .λpred . pred e1 e2
FIRST := λp . p TRUE
SECOND := λp . p FALSE

Elegant and Natural Shrinking Code Samples

PRED := λnum. SECOND (num (λp .
IF (FIRST p)

(PAIR TRUE (SUCC (SECOND p)))
(PAIR TRUE (SECOND p)))

(PAIR FALSE ZERO))

SUB := λnum1 .λnum2 . num2 PRED num1

Note that subtraction ”bottoms out” at zero!

Code Samples: Comparative Studies

LEQ? := λnum1 .λnum2 . ZERO? (SUB num1 num2)
EQ? := λnum1 .λnum2 . AND (LEQ? num1 num2)

(LEQ? num2 num1)

Endless Code Samples

REC := λ f . f f

Exercise: Try to reduce (REC REC) until you can’t reduce it any
more!

Code Samples: A Nation...

COUNTWHILE := λp . REC (λ s e l f .λaccum .
IF (p accum)

((REC s e l f) (SUCC accum))
(PRED accum)

) ZERO

DIV := λnum1 .λnum2 . COUNTWHILE
(λaccum . LEQ? (MUL accum num2) num1)

DIVREM := λnum1 .λnum2 .
PAIR (DIV num1 num2)

(SUB num1 (MUL num2 (DIV num1 num2)))

break;

time!

Implementing the Multiverse

I Now that we’ve got that standard library stuff outta the way,
time to implement the multiverse.

I But first, we must introduce the original sin of creation...

A Very F***ed-Up Language: P”

I More f***ed-up than Brainf***
I But very similar – P”!

Setting:
I Finite Program Tape containing a sequence of valid

instructions
I Bi-Infinite Data Tape of boolean (FALSE/TRUE) (0/1) cells.

Instructions:
I ”�”: Move the data tape’s read/write head one space to

the left
I ”�”: Flip the bit under the data tape’s head, then move the

data tape’s head one space to the right
I ”[” : No-op. Marks a potential jump destination for...
I ”]” : If the current symbol under the data tape is 1/TRUE,

jump back in the program tape to the matching ””.

Abominable Code Samples

Flip the bit under the data tape head:
I FLIPBIT :=��

Set the bit under the data tape head to 0:
I SET0 := [FLIPBIT]

Move one space to the right without flipping the current bit:
I R := FLIPBIT�

Move the current bit one space to the right:
I RMOV := R SET0 FLIPBIT� [FLIPBIT R FLIPBIT�] R

FLIPBIT�

I Painful, right?
I But it’s Turing complete!

Wrapping Up: Row, Row, Row Your Boat

RCONSTSTREAM := λconst . REC
(λ s e l f . PAIR const (REC s e l f))

LCONSTSTREAM := λconst . REC
(λ s e l f . PAIR (REC s e l f) const)

MAP := λ f . REC (λ s e l f .λstream .
PAIR (f (FIRST stream))

((REC s e l f) (SECOND stream)))

NATURALS := REC (λ s e l f .λaccum .
PAIR accum (REC s e l f (SUCC accum))) ZERO

Wrapping Up: Operator?

LBRACKET := ZERO
RBRACKET := ONE
LSHIFTOP := TWO
RSHIFTOP := THREE

Wrapping Up: We Caught Everything On

CONSTTAPE := λconst . PAIR (LCONSTSTREAM const)
(RCONSTSTREAM const)

EMPTYPROGRAMTAPE := CONSTTAPE LBRACKET

EMPTYDATATAPE := CONSTTAPE FALSE

Wrapping Up: Red

READ := λ tape . SECOND (FIRST tape)
LSHIFT := λ tape . PAIR (FIRST (FIRST tape))

(PAIR (READ tape) (SECOND tape))
RSHIFT := λ tape . PAIR (PAIR (FIRST tape)

(FIRST (SECOND tape)))
(SECOND (SECOND tape))

SET := λ tape .λva l . PAIR (PAIR (FIRST (FIRST tape)) va l)
(SECOND tape)

FLIPBIT := λ tape . SET tape (NOT (READ tape))

Wrapping Up: Enumerating Programs

INITPROGTAPE :=
λnum. (REC (λ s e l f .λ tape .λd ivResu l t .

IF (ZERO? (FIRST d ivResu l t))
(SET tape (SECOND divResu l t))
(LSHIFT

((REC s e l f)
(RSHIFT (SET tape (SECOND divResu l t)))
(DIVREM (FIRST d ivResu l t) FOUR)))

) EMPTYPROGRAMTAPE (PAIR num ZERO))

Wrapping Up: Might As Well

JUMP :=
(REC (λ s e l f .λ tape .

IF (EQ? (READ (LSHIFT tape)) LBRACKET)
(LSHIFT tape)
(IF (EQ? (READ (LSHIFT tape)) RBRACKET)

((REC s e l f) ((REC s e l f) (LSHIFT tape)))
((REC s e l f) (LSHIFT tape))

)
))

Wrapping Up: One Small
STEP :=
λ s t a t e P a i r . (λprogTape .λdataTape .λ i n s t r u c t i o n .

IF (EQ? i n s t r u c t i o n LSHIFTOP)
(PAIR (RSHIFT progTape) (LSHIFT dataTape))

(IF (EQ? i n s t r u c t i o n RSHIFTOP)
(PAIR (RSHIFT progTape)
(RSHIFT (FLIPBIT dataTape)))

(IF (EQ? i n s t r u c t i o n RBRACKET)
(IF (READ dataTape)

(PAIR (JUMP progTape) dataTape)
(PAIR (RSHIFT progTape) dataTape)

)
(PAIR (RSHIFT progTape) dataTape)

)))
(FIRST s t a t e P a i r) (SECOND s t a t e P a i r)
(READ (FIRST s t a t e P a i r))

He’s Beginning to Believe

SIMULATE MACHINE :=
λmachineNum . REC (λ s e l f . λmachineState .

REC s e l f (STEP machineState))
(PAIR (INITPROGTAPE machineNum)

EMPTYDATATAPE)

And AC said, ”LET THERE BE LIGHT!”

ALL MACHINES := NATURALS
MULTIVERSE := MAP SIMULATE MACHINE ALL MACHINES

A Programmer’s Dream

With just that, we just created a single expression which
evaluates isomorphic copies of:

I The program which runs forever iff ZFC is consistent
I Microsoft Windows (TM) (R) (C) (Z) (N)
I Club Penguin
I TurboTax
I WinRAR
I Runescape (circa 2007)
I A Lambda Calculus interpreter
I A Lambda Calculus interpreter, interpreting the universal

expression itself
All for just one payment of 715 bytes! [zipped]

Whoa, Dude, Pass the Bong, Man!

I Like, dude, what if our universe may be accurately
simulated by a Turing machine?

I Bruh, you could be right.
I If so, wouldn’t it appear as one of our programs?

’Tis a Gift

I What code fragments should we expect to be executed
more often by our program?

I Shorter ones
I Intuition: More likely to be embedded as subroutines
I If programs are viewed as concrete explanations of events,

this means that simple explanations are more likely.
I We just invented Occam’s Razor
I But we also just invented...

Strong AI

I One possible definition of strong AI:
I Something which is able to take any sequence of percepts

generated by a set of rules, learn the rule as it goes, and
use that to come up with actions (which may have an effect
on the sequence) which are closer and closer to an optimal
strategy.

I This doesn’t account for stochastically-generated inputs,
but we can modify the approach we’ll develop

I W.l.o.g, our percept stream is a binary stream
I For us, we’ll assume that we’re just playing a ”guess the

next bit in the stream” game to simplify things.

Solomonoff Induction

I Using the same principles of our universal program...
I Maintain the infinite program state stream
I BUT define a new operator for P”, ”*”, pronounced

”exhibits”
I As we receive new percepts...
I Filter out partially-evaluated programs from our stream if

the symbol under the data head when the next ”exhibits” is
hit fails to match the current percept

I Then, we always use the shortest program remaining to
determine how to act.

I Problem: We don’t know if we’ll ever hit another ”exhibits”
operation! Could loop forever!

I Solution: We approximate (AIXI-t-l) by only simulating up
to a constant number of steps before giving up.

But is that a good definition for intelligence?

I No clue.
I Also, AIXI-t-l is horribly inefficient
I But it’s pretty

Exercises

Note: For the following exercises, you are allowed to pick your
favorite model of computation to work with. Answers may
depend on the model of computation used!

I 1. Prove whether or not we live in a simulation.
I 2. If yes to 1, construct the shortest program guaranteed to

simulate an isomorphic copy of our universe.
I 3. Define intelligence.
I 4. If yes to 1, use 2 and Occam’s Razor to argue

for/against the existence of an intelligent prime mover
within an environment with a ”root” simulation.

Questions?

