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Genesis
● > Be me, around HackCWRU, 2018.
● Am taking Computational Intelligence I and ML
●  Watched a few anime shows, mostly usual stuff like Cowboy Bebop, DBZ, 

and Cory in the House
● Honestly kind of depressed with the state of the real world.
● What to do?



Freudian Theory of The Mind
Realization: Deep down inside, everyone wants to be a cute anime girl.



Seriously



Like Actually



How Can You Not Want To Be This?



A Political Revolution
Political candidates always promise to make anime real

I will succeed where they have failed



Making Anime Real By Making The Real Anime
Idea: Create an augmented-reality 
phone application which replaces all 
people in a live video feed with 
pre-specified anime characters.

http://www.youtube.com/watch?v=zuRbuki1VIs


How, You Ask?
Using...



MACHINE LEARNING



Basic Proposed Pipeline
1. Annotate Live Video Feed with dense [per-pixel] pose data

Basically a mapping from 2D video coordinate space to a normalized 3D body 
”texture map” space, also with a channel with a binary mask including the people 
(and only the people) present in a given frame.



Basic Proposed Pipeline
2. (Re-)position a number of schematic ”dolls” (basic human body templates) 
within an internally maintained 3d space such that their (known, ground-truth) 
per-pixel pose data most closely matches the per-pixel pose data of the live video 
feed.



Basic Proposed Pipeline
3. Read off the transforms on the doll model bones, and transfer those to a 3d 
anime figure so that it matches the dimensions and pose of the doll.



Basic Proposed Pipeline
4. Render cel-shaded 3d anime figures against a transparent background, and 
composite that onto the live view.



DukTape9001 (HackCWRU Repo)

Four d00ds.

 48 Hours.

A destiny to fulfill that is grander than they can imagine.



HackCWRU Implementation
Used OpenPose (Python/C++ library) 

Yields 2D Keypoints per person*frame

Slow even on beefy computers (~4fps)

Just keypoints, no dense pose info

Extracting 3D pose takes some work

We tried to extract 3D poses using 
some hacky estimation of skeleton 
bone lengths and some trigonometry



Result of HackCWRU Implementation

Not very far from the schematic diagram on the right.

Really.

I wish I still had videos. It was godawful.

Everything was confined to a 2d plane

And it only tracked the very endpoints of arms and legs

(Elbows and knees be damned)

Also 4 frames per second on my desktop -- far cry from real-time.



Luckily...
While my boi Coby and I were working on making anime real visually,

Our other teammates made an anime voice changer running on the…

QUALCOMM DRAGONBOARD 410c ™
It was the only project that used it.

As a result, we won a prize.



And For Our Prize...

QUALCOMM DRAGONBOARD 410cs ™



Imaaaaaaaagineeeeeeeeeee
The HackCWRU implementation didn’t work out, but I could see that the task was 
at least possible, if just barely out of the reach of current technology.



Think Beyond The Possible
Although, it wasn’t enough to just make anime real… No.

I wanted to also constructively prove that (market) socialism could work.

Worker’s co-operative:

Every worker has equal power to influence the direction of the firm.

Market Socialism:

Economic system where co-operatives dominate over other kinds of biz entities.



Home Again, Home Again

‘Sconsin

(pictured above: some strange kind of dog)

(pictured on right: typical Wisconsinite fridge)



The Catch?

Living With Parents,

Technically a NEET,

Also a weeb NEET at that.

Ability to take self seriously: 0

But hey, free housing.



Gettin’ Techy With It

Now onto the technical details...

What is a CNN?

Using them for pose detection?

How did you get the BIG DATA?

How do you use Tensorflow?



Neural Networks - Background
Some Linear Algebra: Suppose we have a full-rank NxN matrix M,

Written column-wise as [v1v2v3...]

M =  v1  v2  v3 ...

Then, M ei = vi for any i,

Where ei is the ith standard basis vector

[0, 0, 0, …. 0, 1, 0, …. 0, 0, 0]

                     ith position

Morally speaking:
The columns of a matrix describe what the standard basis vectors map to under multiplication.
Once that’s determined, the behavior of M on all other vectors is describable using linearity.



Neural Networks - Background
More Linear Algebra: In the situation from the previous slide, let’s consider M-1

M-1vi = ei …Okay, what’s the point?

Well, if we think of the vi’s as “features we want to recognize”, 

Then M-1 is the linear transformation which takes any vector v and packs

“the degree of vi-ness” of v into the ith coordinate of the output.

Morally speaking: Linear transformations can re-arrange vector spaces into a format 
where each coordinate corresponds to a “feature”.



Neural Networks - Background
One issue with this intuition:

Can’t express prior knowledge of feature rarity

E.g: Looks like gold?

Probably not actually gold.

It’s probably just some dumb shiny rock.

Solution: Add a bias term.

Previously: Mv             Now: Mv + b

Previously: Linear Transformations              Now: Affine Transformations



Neural Networks - Background
Another issue with this intuition: We can’t 
forget negative information about features

E.g: If something is very much not a cat, 
we wouldn’t say it’s a negative cat.

Exactly this kind of thing would happen if 
we used affine transformations alone.

Solution: Run each coordinate through a 
nonlinear activation function, like ReLU



(Simple) Feedforward Neural Networks
Call the composite function σi○Ai the ith layer Li,

Where σi is some activation function, and Ai is some affine transformation

Feedforward neural net: Lm○...L2○ L1

Morally:
“Recognize L1-level features
Use those to recognize L2-level features
And use those to recognize L3-level features
And so on, and output Lm-level features.

...
in out

L1 L2 L3 Lm



(2D) Convolutional Neural Networks
Just feedforward networks

with a specific kind of linear transformations

Slide a pattern to recognize over the image

(Expressed as a “convolution kernel”)

Each position in the result is set to how closely

the pattern matches at that position in the input



CNNs: Feature Maps
Previous animation: grayscale (single-channel) images, and a single feature.

More generally: Deal with stacks of images, one channel per feature

E.G: Input could be “Red/Green/Blue” at each position in the image

Output could be “Catness/Dogness/Car-ness/Boat-ness” at each position

Call each channel of each intermediate stack of images a “feature map”.

Note: From this intuition, we can see that we 
should apply our biases uniformly upon each 
channel to express relative rarity of features.



CNNs: Training
Convolutional Neural Networks: Just glorified iterated image pattern matching

...But how do we know what patterns to look for?

Supervised learning: Have a collection of known input/output pairings: Data Set

Training set: A subset of the data set that we try to fine-tune our patterns to.

Validation set: A subset of the data we use to estimate when to stop fine-tuning.

Evaluation set: Subset we use to estimate goodness-of-fit outside of the training set.



CNNs: Training With Stochastic Gradient Descent
1. Initialize convolution kernels randomly
2. Jibble the parameters a bit so they work a bit better on the training set
3. Keep jibblin’ on step 2 with the jibblin’ path that helps the training set ‘till we 

don’t get any better on the validation set.
4. Evaluate how good our final patterns are.

Yes, it really is that stupid.

But we don’t know anything much better.



CNNs for Pose Detection
Two Primary Output Formats:

1. Keypoint Heatmaps

Stack of feature maps describing “probability of keypoint” at each pixel

2. Segmentation + Dense pose map

One channel which indicates where people are in the image

Two to three other channels for expressing body surface positions



What OpenPose Does
Output from CNN: Keypoint heatmaps and Part Affinity Fields

Part Affinity Fields: Basically vector fields between adjacent body keypoints

Allows them to do pose detection on multiple people in the same image



What OpenPose Does: CNN Architecture
Literally just two long CNNs (one for keypoint maps, one for part affinity maps) 
duct-taped together in a few places. 



So… You Used OpenPose, Right?
No!

Why?

Well, the technical issues encountered during HackCWRU, but also...

Licensing.



OpenPose’s License
Dual-licensed -- commercial, and open source for research purposes :D

But...

Needless to say, screw that.



So… You Clean-Room Re-engineered OpenPose?
No again.

Initially, I did try to use the “keypoint heatmap” output format.

However, there’s one big problem with this approach...



Computational Complexity of CNN Evaluation
Multiplying a nxm matrix by a vector (pragmatically): 

O(nm)

Applying a cxc convolution kernel with n input channels and m output channels:

O(c2nm)

More Channels: More expressive, but much slower

Fewer Channels: Faster, but carries less information

18 Body Keypoints with Part Affinity Maps? Need like 56 feature maps at each layer.

Not at all practical for mobile devices.



DensePose To The Rescue!

Feb 2018 FB Research Paper

Good-looking results,

CNNs still monstrously-sized

(Hundreds of layers)

But there’s at least room to shrink!

http://www.youtube.com/watch?v=Dhkd_bAwwMc


CNN Architectures For Pose Detection

Previous Slides: All Pretty Simple Architectures -- Good baselines!

But the state of the art in 2016 was actually Stacked Hourglass Networks

Downscaling step: Scale down feature maps by power-of-two-side-length reductions

Intuitively: “Bottom up” pass (describe global pose by gluing together local features)

Upscaling step: Just the opposite

“Top down” pass

(global info -> local info)

Information loss? Nah, uses residuals



My Idea: Scale-Convolutional Neural Networks
Why not keep feature maps in all scales at all layers?

Better, why not use the same maps on all of them?

Me trying to keep SCNNs a 
trade secret (2018, Colorized)

SCNN connectivity diagram
(August 2018)



Scale-Convolutional Neural Networks
Fundamental idea: Scale-convolutional kernels.

Input: a 4r x 4r x L set of feature maps, a 2r x 2r x L set, and a r x r x L set

Output: A 2r x 2r x L set of feature maps

Also called them “trapezoids”

Same one applied to each such triple of scales

Many different possible designs

Varying efficiency/expressivity



The Gambit 
I believed I had a technical advantage with SCNNs on mobile devices

Main Barrier: Obtaining a training dataset that may be used for commerical purposes

Training data-sets with dense pose information are not common.

Most pose data-sets are only licensed for academic use.

Honestly pretty frustrating -- many, many hours of searching with no real results.

To academics: Please stop doing garbage like this. It makes things unnecessarily 
hard for small players, and no more difficult for the big players in the tech market. At 
least dual-license datasets if you have permission to do so.



Data Collection: The Initial Plan
With no data-sets commercially available to use, I was left with no other options.

Flow: 

1. Film people with Microsoft Kinects striking a variety of poses.
2. Capture a variety of video backgrounds to composite in.
3. ??? (Translated: find some way to annotate the images with the ground-truth)
4. Profit

Kinect v2 specs: 60FPS, 512 x 424 Depth Stream, 1080p Video Stream

Actually initially went with Kinect 1… Way cheaper, but worse



The Filming Set-Up: Part I
Got one green-screen

Set up around the dining 
room in my parents’ house

They were impressed

But also not pleased

Dimensions: 8’x8’ on the 
wall, and around ~6’x8’ on 
the floor in front of it.



The Filming Set-Up: Part I
‘Nother pic of this monstrosity



The Filming Set-Up: Part I
The Main Filming Rig

Three Kinects (1xv2, 2xv1)

Boards and dollies and stuff

Desktop computer

Also a laptop -- loads of 
USB bandwidth usage!

Wrote a networked 
application in Python so the 
two could coordinate filming 



The Filming Set-Up: Part I
More details:

Filming rig: on-board router, 
mobile backup battery

Tried to use DragonBoard 410c

Turns out it sucks -> laptop time

Made a calibration cube to align 
RGB and depth images

Usually threw in a third Kinect v1 
at a very wide angle as well



Code For The Filming Set-Up: Part I
Libraries: 

Libfreenect2 for Kinect v2, 
Libfreenect for Kinect v1

OpenCV for image ops

Msgpack for data serialization 

ZeroMQ for networking

Client-server architecture

Kinect v2 Server main loop:



What about the Client?
Initially, a Python Client. Easy, but...

Lack of good async I/O support

Critical in this kind of application

Multiple GBs over the wire at an alarming rate

All need to be saved to the HDD (slow!)

Compression would just make it compute-bound

Frequently dropped entire cameras’ streams



Just Sprinkle Some Java On It
Threw the whole kitchen sink at it

FileChannels, Multithreading, BlockingQueues, ZeroMQ

Three communicating kinds of threads, all pulling from shared queues:

Network message listener threads

Message interpretation threads

Data writing threads

Full HDD Write speed achieved

Frames packed 100-at-a-time into a raw binary format -- rgb_i.dat and depth_i.dat



Data Throughput Problems
Even with HDD write saturated, RAM still filled up under this scheme. Why?

Quick calculation: (512 * 424 + 1920 * 1080 * 0.25) * 60 * 4 * 3  bytes/sec = ~529 MB/s

My HDD: ~120MB/s peak write speed

Used two 500GB SSDs with ~450MB/s peak write speed in a RAID 1 configuration

(Theoretical write speed: ~900MB/s)

This was finally good enough to not drop any frames nor clog up the RAM.

Depth 
stream Half-size video stream Frames/sec, bytes/pixel, num kinects



The Filming Results: Part I
Wrote a small python application to visualize the gathered point clouds

Mostly tested on brothers*

Kinects non-synchronized

Alternating view angles

Aided intuition about Kinects

* No brothers were hurt in the filming of this dataset.



Problems With The Initial Filming Setup

- Not a very wide range of viewing angles achievable -- no green screens on 
the sides, so extreme angles would no longer have a green background

- Kinect v1’s interfere with each other -> some noticeably bad depth frames
- Using two computers and having to deal with network issues sucks
- Major inconvenience to family every time it was used
- Floor/wall green screen shared -> movements could pull it away from the wall
- Bump the cart -> need to calibrate again
- Cords to trip on everywhere



The Filming Set-Up: Part II

Ahhh… Much better. Although, 3x Kinect v2 -> needed to install two USB 3.0 PCI-e cards in the floorputer



The Filming Code: Part II
Dropped the network junk, switched to a multi-process Python script

One process per Kinect

Used bgwrite to do async I/O

Achieved full write speed

Also wrote some scripts to compress (massive, ~200MB) generated files

Also wrote quick scripts to play them back, for QA purposes

(Take that, Java)



The Grabanski Talent Agency 
Needed to find aspiring young actors who dream of jumping like a frog

How? 

Craigslist ad? 

Newspaper ad?

Facebook ad?

First, two issues to handle...



Liability
What if someone slips on a banana peel and tries to sue?

Solution: Create a legal entity to shoulder the blame, and have every person 
filmed sign a model release contract.                     [it’s the American way :’)  ]

Introducing… Funktor Reactive, LLC -- A Wisconsin single-member LLC

Takeaway: Starting a company is not that hard -- it’s just some paperwork!

Starting a successful company is hard. 



Credibility
Try walking up to a stranger and asking “Can I film you doing weird poses in 3D?”

Need a platform to explain what’s happening… Time to do some  -[w e b  d e v]-

Used Jekyll theme “Millennial” -> www.funktorreactive.com [now-defunct]

http://www.funktorreactive.com


Advertising Time!
Posted in Twin Cities Queer Exchange

Knew few people at the beginning

Due to thread-bumps by comments, 
got about three people or so per week

Network effects quickly set in

$50 for goofing around ain’t bad!

Also made some friends



Livin’ The Life
Usual drive: 30 mins -> hour each way.

Served cold drinks during hot weather

Some great car conversations

People had tons of fun!

Couples were the best to film, since the 
second person to go often got their revenge

Overall, 10/10, $1k well spent

Still frame of participant doing “The Scream” with 
basic chroma-key background removal applied



Annotating The Data
Unlabeled 3D point cloud video of people doing weird things - check

How to label the data with ground-truth poses?

A Few Possible Approaches:

1. Set up an Amazon Mechanical Turk task for people to manually annotate images
2. Use some pre-existing classifier to automatically annotate the images

Obviously, option 1 would yield better data...



Machine Learning, Menial Labor, and Mental Illness
Living with OCD: One thing that is near impossible for me to do:

Making another person perform a task that will bore them out of their minds.

Was legitimately afraid that I was inconveniencing every customer service 
representative I ever interacted with -> prefer self-checkout, automation strategies

Making people annotate thousands of images was unimaginable to me.

So, on the automation route I go!



Automated Pose Labels
The idea: Wear a morph suit

Color-code each appendage

Color-code points on appendages

Do everything participants did

Augment the data by distorting my bodily proportions in the depth frames

Train a pose detector using depth frame/ processed color data pairings

Use the pose detector trained on depth data to annotate RGB-d participant dataset



Body Templates
Common body coordinate system?

Scanned myself from a variety of angles

Manually stitched together a point cloud

Added some schematic color-coding (Python)

You may not like it, but this is what peak 
human performance looks like. 



The Finer Points of Chroma-Keying

Nobody will tell you this, but it’s 
actually a royal pain in the *** to 
get chroma-keying right.

In my case: spent several hours 
generating plots with MatPlotLib 
to try to figure out best linear 
separating hyperplanes between 
adjacent colors.

HSV is 3D, plots are 2D

Life sucks



Deformable Registration of Point-Clouds
Chroma-keyed points -> accurate locations for specific points on my body

Everything else? No direct ground-truth annotation.

Problem: Using continuous mappings, align template to captured frames

This is a deformable registration problem. (s/o to MIM Software)



Deformable Registration of Point-Clouds
Approach: Fit a transformation from (time x template location) -> frame location.

Yields a changing embedding of the template within 3+1D space-time. 

Representation of the transformation?

Use a small feed-forward neural network!

Just like before, but with a different evaluation criteria:

Total Loss = “Isometricity loss” + Point distance loss

Where “Isometricity loss” is a measure of the distortion of the template



Code for Deformable Registration of Point Clouds
In Repo as TemporalRegister.py

Some notes: Previous slide is simplified

Actually, we try to fit the registration

+ Its inverse!

Also, we have loss terms for color differences

when compared with the template



Deformable Registration of Point Clouds: Screenie



Results of Deformable Registrations:
Pretty good most of the time.

Except, of course, when it wasn’t.



Annotating Morph-Suit Depth Images

With deformable 
registrations in hand, 
labeling depth images is 
just* a matter of finding 
nearest points on the 
(deformed) template. 

Some pretty results:



Annotating Morph-Suit Depth Images: Code

The * on the previous slide?

Well, actually, did k-nearest neighbors

And did some post-processing

Code in AutoLabelTFRecordSaver.py

Exports results to .tfrecord data format

Body template position labels are packed in as uint16’s

 -> they’re indices into the template’s point array!



The Depth-Frame Pose Detector: Network Internals
Code Architecture of Depth-Frame NN:

Wrote a small library in Python for NNs

Functional programming-y style

Pictured: Definition of network

With F feature maps, L layers, and B is 
the “block size” for DenseNet-like 
blocks (full explanation of 
experimentation there would 
completely fill a whole other talk.)



The Depth-Frame Pose Detector: Loss Functions
Scale-convolutional nets ->Have 8x8, 16x16, 32x32, … outputs

Loss function? 

Iteratively downsample the target image -> Compare each against each

Return a weighted sum of differences



The Depth-Frame Pose Detector: Data Augmentation
AnnotationSuitDepthTrainer.py

Data Augmentation:

Makes dataset artificially “bigger”



The Depth-Frame Pose Detector: Data Pipeline
Tensorflow has a really nice Dataset class -> Abstracts away lots of complexity



Annotating RGB Pose Data
Takes the trained depth image pose detector -> Uses it to annotate the dataset.

Bit of post-processing -- Output from network is arbitrary position in template-space

Snap those output points to actual points on the templates

Encode it in more-or-less the same .tfrecord format as the annotated depth images



Training The RGB-only Pose Detector

Literally the same as the Depth pose detector, just with more input channels

… and a smaller, more compact neural network.

We need to make it run on a mobile device, after all!

The network is quantized* for extra performance

Exported to tflite model format

*Explaining this in detail could also take a while.



Building an Android App
Used                         by                       

Would help with absolute position tracking

Convenient SceneForm rendering

Useful for rendering animated skeletons

Provides some basic 3D math classes: Quaternions, Vectors, Matrices…

I wound up ripping stuff out of a Tensorflow Lite Demo, and out of an ARCore 
Demo, and duct-taping them together somewhat hastily.



Raycasting And Dolls
How to determine where to render the figure, and in what pose?

Use Gradient Descent with automatic differentiation

Loss function: Draw rays through each pixel in the current frame’s neural net output. 
Wherever the ray hits the schematic “doll”, determine what body part it hit, and 
where that point is on the template. Compare the distance between those two.

Model joint rotation -> represented with unit Quaternions for numerical stability.

Each frame runs a fixed number of gradient descent steps to cap the runtime.



Behold
It’s garbage



A Retrospective

I managed to build the full pipeline I dreamed of, which is p neat.

However, the individual components could’ve used some improvements.

In particular: A human-labeled set of ground-truth annotations >

                     Any sort of automated or semi-automated process

Still was lots of fun, though.



But Wait… Why’d You Stop?
Published On Feb. 25th of 2019: HRNet (Microsoft Research) Paper

Pretty much the same idea

I was doing it before it was cool!



What I’m Doing Nowadays

https://docs.google.com/file/d/11KhYhRkJNe67pWTErdNuAk0xvNSUY0jY/preview


All Code Now Open-Source!
Repo: https://github.com/bubble-07/AnimeReal/

https://github.com/bubble-07/AnimeReal/


What About The Datasets?
They’re fairly large (~4TB uncompressed)

If you want them, please ask me, and I’ll try to work something out.



Questions?


