Anime Meets Reality
Or: How to Think Weebier Than The Possible

Alex Grabanski
10/8/2019

Genesis

Freudian Theory of The Mind

Realization: Deep down inside, everyone wants to be a cute anime qgirl.

/../ / 1” \\\“ b \,.‘-l T \‘\ \\

/.

y/

-
7 —
—
e =

How Can You Not Want To Be This? C(- - A
/

s

N

A Political Revolution

Political candidates always promise to make anime real

| will succeed where they have failed

N

"r"!'l

|
“ - i
\ = 4"
. \ g
.\f. = Ji
([\\ I/ s
N /I8 &
4 :‘IQ

WILL MAKE ANIME REAL

N -
AR

Making Anime Real By Making The Real Anime

|ldea: Create an augmented-reality
phone application which replaces all
people in a live video feed with
pre-specified anime characters.

13.5

chanbanhi

http://www.youtube.com/watch?v=zuRbuki1VIs

How, You Ask?

Using...

MACHINE LEARNING

SAFELY ENDANGERED

SWEET JESUS, POOH!
THAT'S NOT HONEY

Albert Einstein: Insanity Is Doing
the Same Thing Over and Over Again
and Expecting Different Results

Machine learning:

: MACHINE LEARNING CYBER
YOU'RE EATING BLOCKCHAIN HACKER (CISSP)
INFOSEC PROPAGANDA

a

a

Basic Proposed Pipeline

1. Annotate lee Vldeo Feed with dense [per-pixel] pose data

Basically a mapplng from 2D wdeocoordmate space to a normallzed 3D body
"texture map” space, also with a channel with a binary mask including the people
(and only the people) present in a given frame.

Basic Proposed Pipeline

2. (Re-)position a number of schematic "dolls” (basic human body templates)
within an internally maintained 3d space such that their (known, ground-truth)
per-pixel pose data most closely matches the per-pixel pose data of the live video

feed. ‘

Basic Proposed Pipeline

3. Read off the transforms on the doll model bones, and transfer those to a 3d
anime figure so that it matches the dimensions and pose of the doll.

Basic Proposed Pipeline

4. Render cel-shaded 3d anime figures against a transparent background, and
composite that onto the live view.

DukTape9001 (HackCWRU Repo)

Four dOOds.
48 Hours.

A destiny to fulfill that is grander than they can imagine.

IT/S OVER: 9000

HackCWRU Implementation

Used OpenPose (Python/C++ library)

Yields 2D Keypoints per person*frame

Slow even on beefy computers (~4fps) §
Just keypoints, no dense pose info - 2

Extracting 3D pose takes some work

ﬂnenPGSe

We tried to extract 3D poses using
some hacky estimation of skeleton
bone lengths and some trigonometry

Result of HackCWRU Implementation

Not very far from the schematic diagram on the right.
Really.

| wish | still had videos. It was godawful.

Everything was confined to a 2d plane

And it only tracked the very endpoints of arms and legs

(Elbows and knees be damned)

Also 4 frames per second on my desktop -- far cry from real-time.

Luckily...

While my boi Coby and | were working on making anime real visually,

Our other teammates made an anime voice changer running on the...

QUALCOMM DRAGONBOARD 410c ™

It was the only project that used it.

As a result, we won a prize.

And For Our Prize...
OMM D AGONBOéIIRD 410cs ™

RUALC

-
-

> = : r— T SEET
o - T - ’ -

o

\
LN

Imaaaaaaaagineeeeeeeeeee

The HackCWRU implementation didn’t work out, but | could see that the task was
at least possible, if just barely out of the reach of current technology

(R

Think Beyond The Possible

Although, it wasn’t enough to just make anime real... No.

\TOGETHER,
MARX-

Worker’s co-operative: < S

Every worker has equal power to influence the direction of the firm.

Market Socialism:

Economic system where co-operatives dominate over other kinds of biz entities.

Home Again, Home Again

‘Sconsin

(pictured above: some strange kind of dog)

(pictured on right: typical Wisconsinite fridge)

The Catch?

Living With Parents,
Technically a NEET,
Also a weeb NEET at that.

Ability to take self seriously: O

But hey, EEINGUSING

Gettin’ Techy With It

Now onto the technical details...
What is a CNN?

Using them for pose detection?
How did you get the BIG DATA?

How do you use Tensorflow?

Neural Networks - Background

Some Linear Algebra: Suppose we have a full-rank NxN matrix M,

Written column-wise as [v,v,v....] Then, M e =v. forany i,
T T T Where e. is the ith standard basis vector
M= | v, v, Vj .o [0,0,0,....0,1,0,....0,0, O]

1
l l l itr~[1T position

Morally speaking:
The columns of a matrix describe what the standard basis vectors map to under multiplication.
Once that’s determined, the behavior of M on all other vectors is describable using linearity.

Neural Networks - Background

More Linear Algebra: In the situation from the previous slide, let's consider M1
M-'v. = e. ...Okay, what's the point?

Well, if we think of the vi’s as “features we want to recognize’,

Then M is the linear transformation which takes any vector v and packs

“the degree of v.-ness” of v into the ith coordinate of the output.

Morally speaking: Linear transformations can re-arrange vector spaces into a format
where each coordinate corresponds to a “feature”.

Neural Networks - Background

One issue with this intuition:

Can’t express prior knowledge of feature rarity

E.g: Looks like gold?
Probably not actually gold.
It's probably just some dumb shiny rock.

Solution: Add a bias term.

Previously: Mv———> Now: Mv + b

Previously: Linear Transformations ———) Now: Affine Transformations

Neural Networks - Background

10

Another issue with this intuition: We can't
forget negative information about features i

E.g: If something is very much not a cat,
we wouldn’t say it's a negative cat. 4

Exactly this kind of thing would happen if 2
we used affine transformations alone.

Solution: Run each coordinate through a
nonlinear activation function, like ReLU

RelLU

R(z) =maz(0, z)

10

(Simple) Feedforward Neural Networks

Call the composite function o.0A. the ith layer L,

Where o is some activation function, and Ai is some affine transformation

Feedforward neural net: Lmo...Lzo L1

Morally:

“Recognize L, -level features

Use those to recognize L,-level features in out
And use those to recognize L,-level features :> L :> L :'> L L :>
And so on, and output L_-level features. ! 2 3 m

(2D) Convolutional Neural Networks

Just feedforward networks output
ke
. . g . . . \\\
with a specific kind of linear transformations g.lhh \\\\\
3T
NN S
S Qg” RN
TN 0] SO
NNLOTS NN
LSS RN
. . . 3 {‘\ S \ \\ \
Slide a pattern to recognize over the image NENRYD W
RUTRNTN NS
13 H ” {}<$ 3 { i
(Expressed as a “convolution kernel”) {}){$§{
RNNHN
e . e
Each position in the result is set to how closely \Qi

input

the pattern matches at that position in the input

CNNs: Feature Maps

Previous animation: grayscale (single-channel) images, and a single feature.

More generally: Deal with stacks of images, one channel per feature

E.G: Input could be “Red/Green/Blue” at each position in the image

Output could be “Catness/Dogness/Car-ness/Boat-ness” at each position

Call each channel of each intermediate stack of images a “feature map”.

Convolutional Network
with Feature Layers

Note: From this intuition, we can see that we
should apply our biases uniformly upon each
channel to express relative rarity of features.

CNNs: Training

Convolutional Neural Networks: Just glorified iterated image pattern matching

...But how do we know what patterns to look for?

Supervised learning: Have a collection of known input/output pairings: Data Set

Training set. A subset of the data set that we try to fine-tune our patterns to.
Validation set: A subset of the data we use to estimate when to stop fine-tuning.

Evaluation set: Subset we use to estimate goodness-of-fit outside of the training set.

CNNs: Training With Stochastic Gradient Descent

1. Initialize convolution kernels randomly

2. Jibble the parameters a bit so they work a bit better on the training set

3. Keep jibblin’ on step 2 with the jibblin’ path that helps the training set ‘till we
don’t get any better on the validation set.

4. Evaluate how good our final patterns are.

Yes, it really is that stupid.

But we don’t know anything much better.

CNNs for Pose Detection

Two Primary Output Formats:

1. Keypoint Heatmaps

Stack of feature maps describing “probability of keypoint” at each pixel

2. Segmentation + Dense pose map

One channel which indicates where people are in the image

Two to three other channels for expressing body surface positions

What OpenPose Does

Output from CNN: Keypoint heatmaps and Part Affinity Fields

Part Affinity Fields: Basically vector fields between adjacent body keypoints

Allows them to do pose detection on multiple people in the same image

(YRR

(b) Part Confidence Maps

“

(c) Part Affinity Fields (d) Bipartite Matching (e) Parsing Results

(a) Input Image

What OpenPose Does: CNN Architecture

Literally just two long CNNs (one for keypoint maps, one for part affinity maps)
duct-taped together in a few places.

Stage 1 Stage t, (t > 2)
Loss ' Loss »
C 1 fll ' t ft :
Branch 1 p ' Branch1 p 1 '
Convolution e " . :
B 7x7||7x7|[7x 7| [7x7| [T 7| [1x1||1x1 S
_ [3x3([3x3[[3x3|[1x1|[1x1 . X .
Bl lle|lc ek » < ; cllclcllc| el el ecTn>w—"
: /" 1x1[/1x1 :
3x3||13x3|[3%x3||1x1||1x1 ' TXTNTXTNTXTI|TXT7TXT]|1X X '
- = »> > —
F cllcllcl|cl|lc Mxuw'leg L Wcllcllcliclicliclic W xw' =g
| L" .
Branch 2 ¢! B . Branch 2 @' Loss :
fi ' f '

S0... You Used OpenPose, Right?

No!
Why?
Well, the technical issues encountered during HackCWRU, but also...

Licensing.

OpenPose’s License

Dual-licensed -- commercial, and open source for research purposes :D

But...

Non-Exclusive Commercial License

Here is a copy of the license template: https:/flintbox.com/file/download/13057
Important points from the license:

« The non-exclusive commercial license requires a non-refundable $25,000 USD annual royalty.

non-refundable $25,000 USD annual royalty.

» $25,000 USD annual

Needless to say, screw that.

So... You Clean-Room Re-engineered OpenPose?

No again.
Initially, | did try to use the “keypoint heatmap” output format.

However, there’s one big problem with this approach...

¥ 0@ o) daaem B Bt [o) deaem B

o
= name bubble-07@Lanbday-Desktop: S cd ~/AnineReal4Real 2 15:44:30 2018 D NewT @ ubu

=
'5 |enp pert pur:usage/cap| Memory-Usage | GPU-UELL Compute H.

OFf | 00000000:01:00.0 N/A |
NA | 6soNB DHome

leForce GTX 660
lisc e N/A/ /19918 | Plctures

leForce GTX 108... OFf | 00000000:04:00.8 Of'
75C P2 116M / 250W | 10770M8 / 11178WB

GPU Henory |
usage I

Not Supported
pyth

bubbla-07@ Lambdav-DeskEop: ~/AnimeReal4Rasl
6.14895973

952!
Max Heat for 14 0.07282245

Batchs: 56000

Loss: 0.024634285

Batches per second: 0.916255629843
Batch#: 56001

Loss: 0.102507204829

Batches per second: 0.916256388362

Erinents/nobile-tensor flow-ne

Computational Complexity of CNN Evaluation

Multiplying a nxm matrix by a vector (pragmatically):

O(nm)

Applving a cxc convolution kernel with n input channels and m output channels:

O(c?nm)

More Channels: More expressive, but much slower

Fewer Channels: Faster, but carries less information

18 Body Keypoints with Part Affinity Maps? Need like 56 feature maps at each layer.

Not at all practical for mobile devices.

DensePose To The Rescue!

Feb 2018 FB Research Paper
Good-looking results,

CNNs still monstrously-sized

(Hundreds of layers)

But there’s at least room to shrink!

s Va4

AR

2\

B Y
al f

U Coordinates

V Coordinates

http://www.youtube.com/watch?v=Dhkd_bAwwMc

CNN Architectures For Pose Detection

Previous Slides: All Pretty Simple Architectures -- Good baselines!

But the state of the art in 2016 was actually Stacked Hourglass Networks

Downscaling step: Scale down feature maps by power-of-two-side-length reductions

Intuitively: “Bottom up” pass (describe global pose by gluing together local features)

Upscaling step: Just the opposite

“Top down” pass

(global info -> local info)

Information loss? Nah, uses residuals

My ldea: Scale-Convolutional Neural Networks

Why not keep feature maps in all scales at all layers?

Better, why not use the same maps on all of them?

[<] |
=]
L — Joss Give'me the formuoli!
: : Me trying to keep SCNNs a
G 1o 7 AF)(C £ o A .
(el CEtidbles L - trade secret (2018, Colorized)
@ T wov [% j‘n/ﬂr (//ég{/a‘ﬂljf some
[g<]
[a] SCNN connectivity diagram
= S ' - (August 2018)
e R AT L]

Scale-Convolutional Neural Networks

Fundamental idea: Scale-convolutional kernels.

Input: a 4r x 4r x L set of feature maps, a 2r x 2r x L set,andar xr x L set

Voriant 4% I Varjont— 2.%
o P
Output: A 2r x 2r x L set of feature maps Citee BEdEERI 0
con
,: 2%
Also called them “trapezoids” | sack
% cn/. con/
o e e R o e i o R
Same one applied to each such triple of scales é
Many different possible designs @M@ .W
e g s, -p®)]
. . .. &eFfMoT“m I
Varying efficiency/expressivity ieet emoldes 0 b vt i 2
Draw back: Explosion Jn| # \/andlm/l;mm_. 2 bat swp
oK featue mys (€3 fo osonps, Mg ols ™

te any, in 58t combos

The Gambit

| believed | had a technical advantage with SCNNs on mobile devices

Main Barrier: Obtaining a training dataset that may be used for commerical purposes

Training data-sets with dense pose information are not common.

Most pose data-sets are only licensed for academic use.
Honestly pretty frustrating -- many, many hours of searching with no real results.

To academics: Please stop doing garbage like this. It makes things unnecessarily
hard for small players, and no more difficult for the big players in the tech market. At
least dual-license datasets if you have permission to do so.

Data Collection: The Initial Plan

With no data-sets commercially available to use, | was left with no other options.

Flow:

Film people with Microsoft Kinects striking a variety of poses.
Capture a variety of video backgrounds to composite in.
??7? (Translated: find some way to annotate the images with the ground-truth)

Profit

BN~

Kinect v2 specs: 60FPS, 512 x 424 Depth Stream, 1080p Video Strea

Actually initially went with Kinect 1... Way cheaper, but worse

The Filming Set-Up: Part |
Got one green-screen

Set up around the dining
room in my parents’ house

They were impressed

But also not pleased

Dimensions: 8’x8’ on the
wall, and around ~6’x8’ on
the floor in front of it.

The Filming Set-Up: Part |

‘Nother pic of this monstrosity

The Filming Set-Up: Part |

The Main Filming Rig

Three Kinects (1xv2, 2xv1)

Boards and dollies and stuff | A |
Desktop computer " . A\

' | 7 o (Y
Also a laptop -- loads of o | pm

USB bandwidth usage!

Wrote a networked
application in Python so the
two could coordinate filming

The Filming Set-Up: Part |

More details:

Filming rig: on-board router,
mobile backup battery

Tried to use DragonBoard 410c

Turns out it sucks -> laptop time

Made a calibration cube to align
RGB and depth images

Usually threw in a third Kinect v1
at a very wide angle as well

Code For The Filming Set-Up: Part |

Libraries:

Libfreenect?2 for Kinect v2,
Libfreenect for Kinect v1

OpenCV for image ops
Msgpack for data serialization
ZeroMQ for networking
Client-server architecture

Kinect v2 Server main loop:

while True:
frames = listener.waitForNewFrame()

rgb = frames["color"].asarray(np.uint8)

depth = frames["depth"].asarray(np.float32)

rgb = cv2.resize(rgb, (int(1920 / 2), int(1080 / 2)))
#Great —— just send those straight over the network

#TODO: Share code with the other KinectImageServer code
#this is awful copy-pasta right now

#Get the current UNIX timestamp in milliseconds
timestamp = long((time.time() + 0.5) * 1000)

out = messages.frame_to_bytes(camera_num, timestamp, depth, rgb)
print "Got frame at time %s" % str(timestamp)
socket.send(out)

print "Sent frame at time %s" % str(timestamp)
listener.release(frames)

What about the Client? - .o

if (k == 'q'):
break
except curses.error:
pass

Initially, a Python Client. Easy, but... rawbrtes = socket.recv0

final_numpy_load = np.load(io.BytesIO(raw_bytes))
timestamp = final_numpy_load['time_stamp']
depth_img = final_numpy_load['depth_img"']
Lack of good async |/O support rgb_ing = final_numpy._load ' rgb_ing]
camera_num = final_numpy_load['camera_num']
win.clear()
win.addstr("Received image at timestamp %s on camera %s \n" % (timestamp, camera_num))
collected_rgb_imgs [camera_num].append(rgb_img)

Critical in this kind of application CL I e R
Multiple GBs over the wire at an alarming rate
All need to be saved to the HDD (slow!)

Compression would just make it compute-bound

Frequently dropped entire cameras’ streams

//Message decoding threads
Function<BlockingQueue<byte[]>, Runnable> messageInterpreter = (messageQueue) -> { return () -> {
while (1 == 1) {
byte[] message = null;
try {
message = messageQueue.take();

catch (java.lang.InterruptedException e) {
System.err.println("Message interpreter operation interrupted!");
e.printStackTrace();

Just Sprinkle Some Java On It

if (message.length == @) {
//Termination signal
return;

Frame frame = null;
try {
frame = Frame.fromMsgPack(message);

Threw the whole kitchen sink at it oy (oo e 0 £

e.printStackTrace();
System.exit(@);

//Adjust frame number of the frame object appropriately
int cam_num = frame.getCameraNum();

frame. setFrameNum(frameNumbers [cam_num]) ;

frameNumbers [cam_num] ++;

FileChannels, Multithreading, BlockingQueues, ZeroMQ &35 5 wim e oo rwrie e wes

f rameQueues . get (cam_num) . put (frame);
catch (java.lang.InterruptedException e) {
System.err.printin("Frame writer queue putting interrupted!");

e.printStackTrace();
System.exit(@);

Three communicating kinds of threads, all pulling from spa}red queues:

Function<Integer, Runnable> frameWriter = (frameQueueNumber) —-> { return () —> {
BlockingQueue<Frame> frameQueue = frameQueues.get(frameQueueNumber) ;

Network message listener threads while (1 =

Frame frame = null;
try {
frame = frameQueue.take();

}
1 H catch (java.lang.InterruptedException e) {
Message |nterpretat|0n threads System.err.println("Frame writer queue operation interrupted!");
e.printStackTrace();
System.exit(Q);
return;
g }
if (frame.isTerminationSignal()) {
Data ertlng threads //Exit the thread, but before we do so, finalize the output streams.
frame_write_managers.get(frameQueueNumber).close();

break;
}

Full HDD Write speed achieved i gt

frame_write_managers.get(cam_num).writeFrame(frame);
}

E e H

Frames packed 100-at-a-time into a raw binary format -- rgb_i.dat and depth_i.dat

Data Throughput Problems

Even with HDD write saturated, RAM still filled up under this scheme. Why?

Quick calculation: (512 * 424 + 1920 * 1080 * 0.25) * 60 * 4 * 3 bytes/sec = ~529 MB/s

! |

Depth
P Half-size video stream Frames/sec, bytes/pixel, num kinects

stream
My HDD: ~120MB/s peak write speed
Used two 500GB SSDs with ~450MB/s peak write speed in a RAID 1 configuration
(Theoretical write speed: ~900MB/s)

This was finally good enough to not drop any frames nor clog up the RAM.

The Filming Results: Part |

Wrote a small python application to visualize the gathered point clouds
Mostly tested on brothers*
Kinects non-synchronized

Alternating view angles

Aided intuition about Kinects

* No brothers were hurt in the filming of this dataset.

Problems With The Initial Filming Setup

- Not a very wide range of viewing angles achievable -- no green screens on
the sides, so extreme angles would no longer have a green background

- Kinect v1’s interfere with each other -> some noticeably bad depth frames

- Using two computers and having to deal with network issues sucks

- Major inconvenience to family every time it was used

- Floor/wall green screen shared -> movements could pull it away from the wall

- Bump the cart -> need to calibrate again

- Cords to trip on everywhere

The Filming Set-Up: Part

Ahhh... Much better. Although, 3x Kinect v2 -> needed to install two USB 3.0 PCI-e cards in the floorputer

The Filming Code: Part I

Dropped the network junk, switched to a multi-process Python script

One process per Kinect
Used bgwrite to do async I/O

Achieved full write speed
(Take that, Java)

#Construct kinect 2 processes
kinect2_processes = []
for i in range(@, num_kinect2_devices):
kinect2_serial = kinect2_serials[i]
camera_num = kinect2_camera_numbers[i]
camera_init = get_kinect2_init(kinect2_serial)
kinect2_processes.append(Process(target=mainLoop,
args=(camera_init, kinect2_framegetter, kinect2_getter_code, kinect2_takedown, camera_num)))

#First, kinect 2 processes, then kinect 1
processes = kinect2_processes + kinectl_processes

#Start all processes
for process in processes:
process.start()

objl = bgwrite(ng_file, rgb_payloéd, ioPrio=ioPriority, closeWhenFinished=True)
obj2 = bgwrite(depth_file, depth_payload, ioPrio=ioPriority, closeWhenFinished=True)

Also wrote some scripts to compress (massive, ~200MB) generated files

Also wrote quick scripts to play them back, for QA purposes

The Grabanski Talent Agency

Needed to find aspiring young actors who dream of jumping like a frog

EXPERIENCE

~ Cornelius
T

How?

Craigslist ad?

Newspaper ad?

Facebook ad?

SEE Cornelius — $15 48
TOUCH Cornelius — $2¢
@c‘"nelius — $25

ot o
f
Expm,,,c o les Ceatd’

First, two issues to handle... "

rnelius this Sunday at the M
Oxperiencecornelius.com

Liability

What if someone slips on a banana peel and tries to sue?

Solution: Create a legal entity to shoulder the blame, and have every person
filmed sign a model release contract. [it's the American way :’)]

Introducing... Funktor Reactive, LLC -- A Wisconsin single-member LLC

rorn 502 ARTICLES OF ORGANIZATION
LIMITED LIABILITY COMPANY

Sec. 183.0202 Wis. Stats.

Executed by the undersigned for the purpose of forming a Wisconsin limited liability company under Ch.
183 of the Wisconsin Statutes:

Article 1. Name of the limited liability company:

Funktor Reactive, LLC

Takeaway: Starting a company is not that hard -- it's just some paperwork!

Starting a successful company is hard.

Credibility
Try walking up to a stranger and asking “Can | film you doing weird poses in 3D?”

Need a platform to explain what’s happening... Time to do some -[web de v]-

Used Jekyll theme “Millennial” -> www.funktorreactive.com [now-defunct]

Funktor Reactive LLC News Projects Opportunities People ~About Contact %a Funktor Reactive, LLC Ree B Epperinilies - Fesple: fGed ™ Corlact W <
)

ival
Fast Mobile Human Pose Detection Welcome to Funktor Reactive!

A worker's co-operative blending fiction and reality with technology

http://www.funktorreactive.com

Advertising Time!
Posted in Twin Cities Queer Exchange

Knew few people at the beginning

Due to thread-bumps by comments,
got about three people or so per week

Network effects quickly set in
$50 for goofing around ain’t bad!

Also made some friends

Hello QE!

My name is Alex Grabanski, and I'm representing Funktor Reactive, LLC
(http://www.funktorreactive.com/), a Hudson, WI startup worker’s co-
operative which builds technology to blend fiction and reality. We are
currently looking to gather data for our human pose database. As a result,
we’re willing to offer short-term $50 contracts to participants who are willing
to be filmed in a wide variety of fun poses. Each participant will be paid the
full amount after filming 15 minutes of footage in our multi-view RGB-D
filming setup. The whole process should take under an hour. We also will
respect your right to privacy under our default contracting option, as we are
not allowed to publicly use your likeness for e.g. advertising without your
permission. No qualifications or experience necessary! We plan to contract
with the first 20 applicants in a first-come-first-served manner, since our only
goal is to capture a very diverse collection of sample pose/image pairs for
our machine learning secret sauce to do its work properly. We are also willing
to coordinate transportation to/from Hudson for low-income applicants, and
will see if we can coordinate car-pooling to be more environmentally-friendly.

Interested, and want more information? Send a private message to https:/
www.facebook.com/FunktorReactive/ or an e-mail to
funktorreactive@gmail.com.

Livin’ The Life

Usual drive: 30 mins -> hour each way.

Served cold drinks during hot weather
Some great car conversations
People had tons of fun!

Couples were the best to film, since the
second person to go often got their revenge

Overall, 10/10, $1k well spent

Still frame of participant doing “The Scream” with
basic chroma-key background removal applied

Annotating The Data

Unlabeled 3D point cloud video of people doing weird things - check

How to label the data with ground-truth poses?

A Few Possible Approaches:

1. Set up an Amazon Mechanical Turk task for people to manually annotate images
2. Use some pre-existing classifier to automatically annotate the images

Obviously, option 1 would yield better data...

Machine Learning, Menial Labor, and Mental lliness

Living with OCD: One thing that is near impossible for me to do:

Making another person perform a task that will bore them out of their minds.

Was legitimately afraid that | was inconveniencing every customer service
representative | ever interacted with -> prefer self-checkout, automation strategies

Making people annotate thousands of images was unimaginable to me.

So, on the automation route | go!

Automated Pose Labels

The idea: Wear a morph suit

Color-code each appendage
Color-code points on appendages

Do everything participants did

Augment the data by distorting my bodily proportions in the depth frames
Train a pose detector using depth frame/ processed color data pairings

Use the pose detector trained on depth data to annotate RGB-d participant dataset

Body Templates

Common body coordinate system?

Scanned myself from a variety of angles
Manually stitched together a point cloud

Added some schematic color-coding (Python)

You may not like it, but this is what peak
human performance looks like.

The Finer Points of Chroma-Keying

Nobody will tell you this, but it's
actually a royal pain in the *** to
get chroma-keying right.

In_my case: spent several hours
generating plots with MatPlotLib
to try to figure out best linear
separating hyperplanes between
adjacent colors.

HSV is 3D, plots are 2D

Life sucks

250

200 A

150 -

100 A

50 A

Deformable Registration of Point-Clouds

Chroma-keyed points -> accurate locations for specific points on my body

Everything else? No direct ground-truth annotation.

Problem: Using continuous mappings, align template to captured frames

This is a deformable registration problem. (s/o to MIM Software)

Deformable Registration of Point-Clouds

Approach: Fit a transformation from (time x template location) -> frame location.

Yields a changing embedding of the template within 3+1D space-time.
Representation of the transformation?

Use a small feed-forward neural network!

Just like before, but with a different evaluation criteria:

Total Loss = “Isometricity loss” + Point distance loss

Where “Isometricity loss” is a measure of the distortion of the template

Code for Deformable Registration of Point Clouds

In Repo as TemporalRegister.py
Some notes: Previous slide is simplified
Actually, we try to fit the registration
+ |Its inverse!
Also, we have loss terms for color differences

when compared with the template

#A network where input vectors are used to determine rigid transformations,
#which are then applied to the spatial component of the input vector
def FfluidTimeNetwork(x, reuse, namePrefix):

scale_fac = 10.0

x = x / scale_fac

with tf.variable_scope(namePrefix):

spatial_positions = x[:, 0:3]
#First thing's first: Figure out how we parameterize our rigid transform!
#Initial expansion layer
with tf.variable_scope(namePrefix + "ExpandInitial®) as s:

out = fcLayer(x, fluid_network_width, reuse, s)
#Middle layers
for i in range(fluid_network_layers):

with tf.variable_scope(namePrefix + "FC" + str(i)) as s:

with tf.name_scope(namePrefix + "FC" + str(i)):
out = out + fcLayer(out, fluid_network_width, reuse, s)

#For the final output, take (1 + fluid_network_segments * 2) * 3
#linearly-transformed network outputs and interpret them
#as pre-translation followed by a repeating sequence of rotations
#and translations
seg_slots = 1 + 2 * fluid_network_segments
seg_params = seg_slots * 3
with tf.variable_scope(namePrefix + "FinallLinear") as s:

rigid_params = fcLinLayer(out, seg_params, reuse, s)
reshaped_params = tf.reshape(rigid_params, [-1, seg_slots, 31)
pre_translate = reshaped_params[:, 0, :]

out = spatial_positions + pre_translate

for i in range(1, seg_slots, 2):
rotate = reshaped_params[:, i, :]
post_translate = reshaped_params[:, i + 1, :]
out = rodrigues(rotate, out)
out = out + post_translate

return out * scale_fac

g

-

A

Deformable Registration of Point Clouds: Screenie

Aeprojection loss 11,7407 (1)
frojec 5 439978 (ln)

tlon los

Batchas per second; 4, 40209269974
Step 100, tratalng loss 20026,)

s 13,5744 (1n)
metricity loss 1,006
Rantfold loss $.11618 (60)
Color diff loss 0,398
Haprojection loss 7,836 (1n)
projection Loss 3,258 (1)
fatches per second: 4. 52009412616
Stop 19, tratalog Loss 241407
L08S Conpantnts:

fart loss 12,118 (1n)
Tsomtrilty loss 1,007
fantfold loss 4. 6684 (1n)
Color dUff loss 0,3548)
Aeprojection loss 75698 (1n)
Projection \oss 3,585 ({n)
Hatches per second: 4, 5641114102
Step 90, tratnlng Loss 210034
1055 conponmts:

hart 1oss 16,165 (1)
Isanetriclty loss 0,952842
wootfold \oss 10,668 (1)
Color 6111 Logs 0,300
Reprofection loss 4.9538) (1n)
projectlon loss 4,153 (1a)

1y [s g el
6 000 bobbedTOUb DSk - pthondanetiter

Y Y

P

herefore potentlal prend v e+ wnln
13 y5pread = ymax + i
16pred = thak - 10l
o (o ¢) |
M N ¢ yla) [
A7 104 = (znex ¢ 20) /
19 hspread » ssprend |
10 hyspread = yspread |
2 huspred = sprend |

cnfigination et

Drlver Verston: 190,59

ts/stable/Inbeless \
T KEYERPIRED 1527 DUsp.A | Volat{le Uncorr, (¢
Nerory-Usage | GAU-UtLL Conpate N,

)
e dustatoce| Beseld

tu/dtsts/wental/m % Perl uriusagec|

o GTH 1600 OfF | 00000000:26:00.0 (n | /A
P AW W | TN [i |] Default

I, of o1d ones used

tll cda 20 1yttstsq o buspread * hespread o hyspread * hysprend Force 1K 0,0, O | OOMAOMT0.0 O | m
AC P T6 DS | 10GTSMD [IITINED | S Defult

Tonge regulred: Xa ke md R NS S .cw.rwr);
ey pmid 7 [)
ot BID Type Process nane Usage
Us (Xt hespread 4y * hysprend) | xpdlstsq .

\ 14 G Juse/b/xorg/horg ANLB
Vo oy * hyspread ¢ x * hsprend) | xpdlstsq ww oG W{ll ol 208
bz f haspread ; 17689, ovthen 106648
r((uelt)fant
g ((ve 1) f20)*
bu((bere)f20)"

f

My 610F o (y mx « y_nta) [Float(y

posttlons = potatList[:, « mpoarray({(x A, y aa)], dtypesap, Moatdd)
posttions « posttions | ap.array([(mnx diff, Moy diff]), dtypesto floatdt)

- B <

nage = np,eros((yres + 1, ares + 1, 1), dtypestp,uintd)

{10 range(h):

1,y + pastelons[t]

1, 9, b o colortdst(d, 013)
color = marray([b, §, 1)
{nage[int(y), fae(x)] « color

cted)

ate, globl st
by, steps, dec
€2, Inshow(wlndowtane, (nage)
cmitey(1t)

.rate, decays
(0, estlons

)

emgoralRegtster p

TR e [= |

Step 261589, tratatng loss 1459,89
08 conponents:
Part losg 1298 (1)
Tsonetrietty Loss 0.841196
Mantfold loss 14307 ({n)
Color diff loss 0,208
Reprofection loss 0,155684 ({n)
Projection loss 0,412426 (tn)
Ntches per seconds 4, 1IN
Step 261600, tralning loss 4S4.67
055 Conpooents:
Part loss. 1,295 (1n)
Isonetrietty loss 0.81414
Monifold loss 13660 ({n)
Color dU11 Loss 0,188146
Reprofection loss 0,11336 (1n)
projection loss 0,307774 ({n)
ATraceback (st recent call ast):
Fle Temoralhegster.py', Lioe 912, 10 awdule>

Fite “Temporategtster.py’, LUne 198, n temporalheglster
908,14l step), foud dlctsfund dlt)

e *fust local/1Lb/g 1/d1st-packages tensor flou/python/clLent/sessionpy”, 1ine
929, {0 run
190 Mtadata ptr)
116 ust[lcal /1 /pythond, 1/ dtst-packages fsesston gy’ lne

18, 1
foed_dlct_tonsor, otions, run etadita)
110 uselcal /1 /pythond T/dist: pckages
198, 10 do,fun
1o netacata)
FUL0 *fuse/Aecal /b pythond T/dhstpickages tansorfLou/python/chLentsesston gy, Lo
14, W o ol
return fa*args)
LU0 ustlocab /1 pythond 7/Lst-packages tensorfhow pyhon kb sesslom ", L
1019, W _fun. o
options, feed dict, fetch |
Flle * fust Mlocal /M b/python?.
10T, (h_lLAf_sessfonrun
fun petodate)
Keyboardinterropt
DubbLe-ATRLIARAAY-Desktop:« py |

fiowpython/clLent sessten. ", Moo

arget Ust, run netadats)
t:pickiges tensorflopython/censesston gy, Ve

LY KRS

Results of Deformable Registrations:

Pretty good most of the time.

Except, of course, when it wasn't.

Annotating Morph-Suit Depth Images

With deformable
registrations in hand,
labeling depth images is
just® a matter of finding
nearest points on the
(deformed) template.

Some pretty results:

Annotating Morph-Suit Depth Images: Code

def advancedGetTemplateIndexImage(pointCloud, labels):

* . .
The * on the previous slide? try:
#getTemplateIndexImage did things relatively simple, in
#the sense that there, it was just a one-time assignment

WelL actua”y’ d|d k_nearest neighbors #of the closest distorted template point from points

#in the point cloud

And dld SOme pOSt-pFOCGSSIﬂg #Here, we'll kinda-sorta do that, but iteratively

#reassign points in the point cloud array to the average
#of nearby neighbors (in template-space), weighted by probabilities given
#by the original distance from the each point to the label cloud

COde In AUtOLabe/TFRecordsaver-py #We'll then snap those positions to positions on the template manifold,

\abelKdTree = ckDTree(labels) #take those as the new coordinates, and do it again.

cloudPointArray = np.asarray(pointCloud.getPoints(), dtype=np. float32) #The result is hopefully smoother and more coherent than the original,
#and hopefully majority-takes—-all for mislabelings

K=8
if (cloudPointArray.shapel[0] < K):

#Special case: not enough points to do the averaging!

return getTemplateIndexImage(pointCloud, labels) f f
#Get the indices of a K-neighborhood of every point in the input cloud EXpOrtS resu ItS to 't reCO rd data Orm at
cloudKdTree = cKDTree(cloudPointArray)
_, cloudKNeighborhoods = cloudKdTree.query(cloudPointArray, K)

Body template position labels are packed in as uint16’s

#Assign probability weights based on a decreasing exponential
#of distance
#Distance (mm) which constitutes a weight reduction to 1/e of what it was

-> they’re indices into the template’s point array!

probWeights = np.exp(-labelDists / naturalDist)

The Depth-Frame Pose Detector: Network Internals

Code Architecture of Depth-Frame NN:

Wrote a small library in Python for NNs
Functional programming-y style
Pictured: Definition of network

With F feature maps, L layers, and B is
the “block size” for DenseNet-like
blocks (full explanation of
experimentation there would
completely fill a whole other talk.)

def generalizedHeatmapGen(F, L, B, in_channels=img_color_channels, out_channels=3, convLayerFunc=dense_sum_scale_layer, inter
#For when this op runs...
""Arguments:
X: an input tensor with the dimensions (N_examples, img_height, img_width, img_color_channels)
params: the parameters of the model, as expressed by "gen_params" above
Returns:
A tuple of tensors of shape (N_examples, height, width, num_field_maps)
in decreasing order of size (in width and height), from 64x64 down to 8x8
which stores the detection heatmaps for each body part
return identity().then(
iteratedDownsample() #Then, iteratively 2x downsample from 256x256 to 8x8
).then(unsplice(3)).then(parallel(#PREPROCESSING: Separate out the 256x256, 128x128 and 64x64 feature maps
parallel(
conv(3, in_channels, feats_128, stride=2).then(
conv(3, feats_128, F / 4, stride=2)), #256x256 feature maps get down-conved twice at stride 2
conv(3, in_channels, F / 4, stride=2), #128x128 feature maps get down-conved once at stride 2
conv(3, in_channels, F / 2) #Generate F/2 64x64 feature maps in the same manner, but stride-1
).then(stack_features()).then(#Stack all of those together to get something of size 64x64
conv(l, F, F) #Convolve the stacked maps to hopefully get agreement with those 32x32 and below
).to_singleton_list()
, replicate_over_list(
lambda: conv(3, in_channels, F), 3) #For the feature maps 32x32 and below, convolve so we can get F chanr
)).then(splice()).then_apply(#That was a mouthful! Put our new 64x64, 32x32, 16x16, and 8x8 feature maps back tc
lambda L: L[::-1]).then(#And reverse the order (8x8 to 64x64 now). SCALE CONVOLUTIONS ARE NEXT
internalsFunc(F, L, B, convLayerFunc=convLayerFunc) #We can actually do stuff with scale-convolutions!
).then(replicate_over_list(
lambda: conv(1, F, out_channels, activation=activ_fn_relu6()), 4)).then_apply(#We need heatmaps, not F f
lambda L : L[::-1]) #Finally, reverse again so we're in increasing order (8x8 to 64x64 heatmaps)

The Depth-Frame Pose Detector: Loss Functions

Scale-convolutional nets ->Have 8x8, 16x16, 32x32, ... outputs

Loss function?

lteratively downsample the target image -> Compare each against each

Return a weighted sum of differences

#Downsampling loss function —- this takes the mean absolute errors
#between the network's 8x8, 16x16, 32x32 and 64x64 outputs
#and iteratively max-pooled versions of the "ground truth" 256x256
#heatmaps
def downsampling_mabs_loss(net_out, expected):

#Iteratively max-pool the expected

expected_out = iterated_max_pool_downsample(expected, 7)[2:-1]

#Compute pairwise mabs losses
losses = map(lambda pair : loss_fn(xpair), zip(net_out, expected_out))

#Multiply by downsampling weighting factors and sum
weighted_losses = map(lambda pair : tf.multiply(xpair), zip(losses, downsample_weighting_factors()))
return reduce(tf.add, weighted_losses, 0.0)

The Depth-Frame Pose Detector: Data Augmentation

def augment_example(depth_image, template_image, template_mask):

nai

#Before doing anything else, apply distortions that only happen to the depth image

AnnotationsuitDepth Traine,.,py #These include speckle noise, point omission noise, and small-angle (approx linear)

#depth adjustments

#First, do small-angle adjustments
Data Auqmentatlon if (AUGMENT_SMALL_ANGLE):
#TODO: Should we use a radially uniform distribution instead?
x_f = tf.random_uniform([], minval=-1.0, maxval=1.0) % AUGMENT_SMALL_ANGLE_MAX_MM
y_f = tf.random_uniform([], minval=-1.0, maxval=1.0) * AUGMENT_SMALL_ANGLE_MAX_MM

Makes dataset artifiCia”y “bigger” depth_image += x_f * x_sweep_array

depth_image += y_f * y_sweep_array
if (AUGMENT_SMALL_SCALE):
delta_z = tf.random_uniform([], minval=-1.0, maxval=1.0) * AUGMENT_SMALL_SCALE_MAX_DELTA_Z

if (AUGMENT_TRANSLATE): depth_image += delta_z
translate_x = tf.random_uniform([], minval=-1.0, maxval=1.8) % AUGMENT_TRANSLATE_X_PIX . depth_image = tf.maximum(@.0, depth_image)
translate_y = tf.random_uniform([], minval=-1.0, maxval=1.0) AUGMENT_TRANSLATE_Y_PIX if (AUGMENT_GAUSS_NOISE):
if (AUGMENT ROTATE): noise = tf.random_normal([424, 512, 1], stddev=AUGMENT_GAUSS_NOISE_STDEV)

depth_image += noise
if (AUGMENT_OMIT_NOISE):
roll = tf.random_uniform([424, 512, 1], minval=0.0, maxval=1.@) < AUGMENT_OMIT_PROB
mask = 1.0 - tf.cast(roll, tf.float32)
depth_image = depth_image * mask

rotate = tf.random_normal([], stddev=AUGMENT_ROTATE_ANGLE_STDEV)
if (AUGMENT_UNIFORM_SCALE):

uniform_scale = tf.random_uniform([], minval=AUGMENT_MIN_UNIFORM_SCALE, maxval=AUGMENT_MAX_UNIFORM_SCALE)
if (AUGMENT_ASPECT_RATIO):

x_fac = tf.random_uniform([], minval=AUGMENT_ASPECT_X_MIN, maxval=AUGMENT_ASPECT_X_MAX)

fac = tf.random_uniform minval=AUGMENT_ASPECT_Y_MIN, maxval=AUGMENT_ASPECT_Y_MAX
Y- - (. = ity £ -YMAx) #This will make things a bit easier, because when we manipulate the

#depth image, we'll usually wind up modifying the mask, too
template_mask = tf.cast(template_mask, tf.float32)
image_mask = tf.concat([depth_image, template_maskl, 2)

aspect_transform = augmentation.get_aspect_ratio_transform(x_fac, y_fac, x_center, y_center)
rot_scale_xlate_transform = augmentation.get_affine_transform(1.0, rotate, uniform_scale, translate_x, translate_y, x_cente
total_transform = tf.contrib.image.compose_transforms(aspect_transform, rot_scale_xlate_transform)

#First thing's first —— determine whether or not to mirror the image
#and adjust template positions accordingly

if (AUGMENT_FLIP):
all_transformed = tf.contrib.image.transform(all_together, total_transform) R .- . .- . o o= 5 e = 5

#Great, now stack all of the things together, and apply the transform!
all_together = tf.concat([image_mask, template_image], 2)

The Depth-Frame Pose Detector: Data Pipeline

Tensorflow has a really nice Dataset class -> Abstracts away lots of complexity

def build_dataset_from_dir(tfrecordRoot, batch_size):
tfrecordFiles = [y for x in os.walk(tfrecordRoot) for y in glob(os.path.join(x[@0], 'x.tfrecord'))]
raw_dataset = tf.data.TFRecordDataset(tfrecordFiles)

raw_dataset.shuffle(buffer_size=shuffle_buffer_size, reshuffle_each_iteration=True)

#Parse from the raw dataset into (depth image, template positions, template mask) format
dataset_formatted = raw_dataset.map(parse_example_to_sample_label, num_parallel_calls=CPU_PARALLEL_THREADS)

dataset_augmented = dataset_formatted.map(augment_example, num_parallel_calls=CPU_PARALLEL_THREADS)

#0kay, great! Now it's batching time!

result_set = dataset_augmented.batch(batch_size, drop_remainder=True)
result_set = result_set.repeat()
result_set = result_set.prefetch(2)

return result_set

Annotating RGB Pose Data

Takes the trained depth image pose detector -> Uses it to annotate the dataset.
Bit of post-processing -- Output from network is arbitrary position in template-space
Snap those output points to actual points on the templates

Encode it in more-or-less the same .tfrecord format as the annotated depth images

Training The RGB-only Pose Detector

Literally the same as the Depth pose detector, just with more input channels

... and a smaller, more compact neural network.
We need to make it run on a mobile device, after all!
The network is quantized* for extra performance

Exported to tflite model format

*Explaining this in detail could also take a while.

Quickstart for Android

Building an Android App

Used € ARCore by Go g|e

Would help with absolute position tracking
Convenient SceneForm rendering

Useful for rendering animated skeletons

Provides some basic 3D math classes: Quaternions, Vectors, Matrices...

| wound up ripping stuff out of a Tensorflow Lite Demo, and out of an ARCore
Demo, and duct-taping them together somewhat hastily.

Raycasting And Dolls

How to determine where to render the figure, and in what pose?

Use Gradient Descent with automatic differentiation

Loss function: Draw rays through each pixel in the current frame’s neural net output.
Wherever the ray hits the schematic “doll”, determine what body part it hit, and
where that point is on the template. Compare the distance between those two.

Model joint rotation -> represented with unit Quaternions for numerical stability.

Each frame runs a fixed number of gradient descent steps to cap the runtime.

/ 010G w -
Ringtone

AnimeReal

Behold N, | W'
=

It's garbage

Tap Scroll capture to capture
any scrollable areas of the
screen that are hidden
Touch and hold to capture
continuously

A Retrospective

| managed to build the full pipeline | dreamed of, which is p neat.
However, the individual components could’ve used some improvements.
In particular: A human-labeled set of ground-truth annotations >

Any sort of automated or semi-automated process

Still was lots of fun, though.

But Wait... Why'd You Stop?

Published On Feb. 25th of 2019: HRNet (Microsoft Research) Paper

Pretty much the same idea

| was doing it before it was cool!

YOU'VE PROBABLY
NEVER HEARD OFIT...

/

scale

down

feature conv. up
ﬁ maps ~ * unit \ samp. / samp.

What I'm Doing Nowadays

https://docs.google.com/file/d/11KhYhRkJNe67pWTErdNuAk0xvNSUY0jY/preview

All Code Now Open-Source!

Repo: https://github.com/bubble-07/AnimeReal/

Branch: master v New pull request Create new file =~ Upload files = Find file Clone or download v

E Alexander-Grabanski Merge branch 'master' of https://github.com/bubble-07/AnimeReal Latest commit b12193f 3 hours ago
[AnimeRealDataCollection Initial adding of source files 3 hours ago
= JavaPoseAnnotator Initial adding of source files 3 hours ago
= LocalKinectSaver Initial adding of source files 3 hours ago
im OldAnimeReal Initial adding of source files 3 hours ago
[PythonCalibrator Initial adding of source files 3 hours ago
B animereal-app-src/src/main Initial adding of source files 3 hours ago
m python-annotator Initial adding of source files 3 hours ago
[.gitignore Update gitignore 3 hours ago

) LICENSE Initial commit 3 hours ago

https://github.com/bubble-07/AnimeReal/

What About The Datasets?

They're fairly large (~4TB uncompressed)

If you want them, please ask me, and I'll try to work something out.

Questions?

