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Generalization Error of AdaBoost

I AdaBoost generalizes surprisingly well in practice, despite
the fact that it fits training data perfectly.

I Somehow seems to reduce both bias and variance
I Competing explanations for this behavior existed before

this paper (margins theory, statistical theory)
I Yet, they fail to describe the generalization behavior in

various ways
I This paper: Yes, AdaBoost overfits, but the overfitting is

very localized.
I Advanced ideas of ”interpolating classifiers” and

”spiked-smooth decision boundaries”
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Margin Theory

I Idea: AdaBoost increases the confidence in its predictions
over time (boosting rounds)

I Measured by the margins of prediction on particular
examples (below)

I Higher minimum margin? Can examine fewer classifiers
(those with the greatest weight) in the ensemble to get a
result.

I Direct generalization bounds in terms of the margins (and
VC dimension, and sample size) exist, but are not tight.
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Problems with the Margins Theory

I Explicit maximization of minimum margins (LPBoost,
arc-gv) does not yield better generalization than AdaBoost
in practice!

I This is despite those algorithms achieving tighter
generalization error bounds!
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Statistical Theory
I AdaBoost is stagewise minimization of the exponential loss

I Exponential loss is a convex surrogate for optimizing the
(intractable) 0-1 loss

I Good generalization in AdaBoost may be achieved by
stopping after some finite number of boosting rounds.

I Stopping early acts as a form of regularization.
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Problems with the Statistical Theory

I Cases exist (Evidence Contrary to the Statistical View of
Boosting, Mease et. al.) where AdaBoost does not overfit,
even as the number of boosting rounds grows very large

I β-boosting, proposed in (On Boosting and The Exponential
Loss, Wyner) does not reduce the exponential loss, but is
very similar to AdaBoost, and has very similar
generalization behavior.
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This paper: Interpolating Classifiers
I AdaBoost fits the training data perfectly – overfitting?

I Black and blue ”interpolate” the data (fit the training set
perfectly), but blue only overfits locally

I Big Idea: Aggregating many different interpolating
classifiers smooths the non-noisy part of the decision
boundary, while keeping spikes around the noisy data
points. Call this a Spiked-Smooth decision boundary.
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Similarity of AdaBoost (over Deep Decision Trees)
with Random Forests

I Random Forests employ randomization in examples,
attribute subsets for splits to generate an ensemble

I Also interpolate the data (with the right nmin)
I Example weights approach an invariant distribution in

AdaBoost (Random Forests, by Brieman)
I Subsequent classifiers may interpolate, but they also

smooth the decision boundary.
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Boosting round ”slabs”

I AdaBoost is AdaBoost with AdaBoost (fixed number of
iterations) as a base classifier

I Enough iterations, and AdaBoost fits the training data
perfectly

I This only happens, though, if training error rates of base
classifiers bounded away from 1
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Intuition about base classifiers (from paper)



The paper’s synthetic experiments

I Generated data randomly in 2d, but with some noisy data
points thrown in.

I Chosen so that Bayes optimal classifier is to classify all
points negative (blue)

I As conjectured, overfitting seems to be localized, just like
with random forests.

I Also did other experiments in higher dimensions, similar
results
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Comparison with Random Forests/1NN (from paper)



Questions/Discussion


